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Generalisedn × n eigenvalue equationB|�i 〉 = λiSb|�i 〉 (i = 1, . . . , n) whereB and
Sb aren × n Hermitian matrices whileSb is in addition positive definite is considered. This
equation is augmented to a generalised(n+ 1)(n+ 1) eigenvalue equationH|
k〉 = εkS|
k〉
(k = 1, . . . , n + 1) where Hermitian matricesH andS represent matricesB andSb, respec-
tively, augmented by one additional row and one additional column. It is shown how the
eigenvaluesεk and the eigenvectors|
k〉 of the augmented eigenvalue equation can be ex-
pressed in terms of the eigenvaluesλi and the eigenvectors|�i 〉 of the original eigenvalue
equation. Operation count to obtain by this method all augmented eigenvalues and eigenvec-
tors is of the orderO(n2). Unless matrices involved are of some special kind such as sparse
matrices or alike, this operation count is one order of magnitude smaller than operation count
required by other presently known methods. In many practical cases operation count to ob-
tain a single selected eigenvalue and/or eigenvector by this method is of the orderO(n). In
the case of the generalised eigenvalue equation, all other methods usually require againO(n3)

operations, even if only a single eigenvalue and/or eigenvector is required. Thus in many cases
of interest operation count to obtain a selected eigenvalue and/or eigenvector by this method
is two orders of magnitude smaller than operation count required by other methods.

KEY WORDS: matrix augmentation, generalised eigenvalue equation, eigenvalue problem,
perturbation

1. Introduction

Consider the following problem: The solution of an eigenvalue equation in some
base{|φi〉} (i = 1, . . . , n) is known. One would like to increase this base with one
additional vector|�〉 ≡ |φn+1〉 in order to improve accuracy of this solution. In general,
there may be many candidates for this additional vector, and one would like to find the
best one in a most efficient way. For example, base vectors|φi〉 can be atomic orbitals,
while the eigenvectors and eigenvalues of the eigenvalue equation represent molecular
orbitals and their energies. One would like to find out how the inclusion of an additional
atomic orbital|�〉 influences those molecular orbitals and their energies. As another
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example, assume that base vectors|φi〉 are resonance structures in the VB approach and
we are looking for the VB ground state. We would like to increase the base set with
an additional resonance structure in such a way as to decreases ground state energy as
much as possible. Here again there is usually a large number of candidate resonance
structures. In addition, VB resonance structures are in general not orthogonal to each
other, and the corresponding eigenvalue equation is a generalised eigenvalue equation of
a typeH|
〉 = λS|
〉 whereS is positive definite matrix.

In this and similar situations one can use standard approach to diagonalize the aug-
mented eigenvalue equation separately with each candidate base vector|�〉. Standard di-
agonalization methods such as Householder, Jacobi or Givens requireO(n3) operations
in order to find alln eigenvalues. Additional operation count to find the corresponding
eigenvectors is alsoO(n3) [1,2]. Those methods do not apply directly to the generalised
eigenvalue equation. In order to solve such an equation one usually has to transform it
into a normal eigenvalue equation. The obtained eigenvalue equation is then solved in a
standard way. IfS is symmetric positive definite matrix, this transformation can be most
efficiently done by Cholesky decomposition [1]. However this decomposition alone re-
quiresn3/6 operations. In addition, there is yet another operation count needed for the
construction of the final eigenvalue equation that is again of the orderO(n3).

In many cases one has to find only one or only a few selected eigenvalues and/or
eigenvectors. Direct diagonalization methods are not particularly suitable for such prob-
lems. In the case when only a single solution is required, some other method, such as
the power method, the Davidson algorithm, the Lanczos method, or the perturbation ex-
pansion is usually more efficient. In the power method, one repeatedly calculates the
action of a given matrix to previously obtained vectors. Each iteration requiresO(n2)

operations. The number of iterations needed to obtain a required accuracy increases
with n. The total operation count is hence higher thanO(n2) but lower thanO(n3).
However, the power method can be directly applied only for the calculation of extreme
eigenvalues. In order to find an arbitrary eigenvalue by this method, one has to calculate
matrix inverse, which is again of the orderO(n3) [1,2]. The Lanczos method is more
efficient than the power method. Each iterative step of this method requiresO(n2) op-
erations, and intermediate results usually converge to extreme eigenvalues already after
a few iterations [1]. Lanczos algorithm is hence faster thanO(n3) if only a few extreme
eigenvalues are required. However, this method is againO(n3) if an arbitrary eigen-
value and/or eigenvector is needed. Davidson’s algorithm [3] is usually a method of
choice in the large scale CI calculations [4]. Operation count of this algorithm is also
less thenO(n3) if only a few eigenvalues and eigenvectors are required [4]. However,
this method highly relies on the sparsity of the Hamiltonian. Finally, the perturbation
expansion is in general also at leastO(n3). It is less thanO(n3) only if the perturbation
is so small that higher expansion terms can be neglected, or if the matrices involved are
of some special kind, such as sparse matrices or alike. Thus all those methods are of
the order higher thanO(n2), even if only one eigenvalue and/or eigenvector is required.
In addition, those methods apply only to a standard eigenvalue equation. In the case
of the generalised eigenvalue equation, the problem is much more complex. Additional
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Figure 1. Interaction of a one-dimensional systemSa with the n-dimensional systemSb. SystemSa
is described by a single eigevector|�〉 with the eigenvalueE. SystemSb is described by a generalised
eigenvalue equation (1a). Generalised interaction is(V,P), and the combined system is described by the

generalised eigenvalue equation (4).

operation count that is required is usually of the orderO(n3), even if only a single eigen-
value and/or eigenvector is required. For large matrices this is very time consuming. It is
therefore desirable to have some more efficient method to treat this and similar problems.

The problem of the augmentation of the generalised eigenvalue equation can be
formulated in terms of the interaction of a one-dimensional quantum systemSa with
then-dimensional quantum systemSb (see figure 1). With a systemSa is associated a
one-dimensional spaceXa1 and with a systemSb is associated ann-dimensional space
Xbn. SpacesXa1 andXbn are orthogonal to each other, and with a combined systemS ≡
Sa ⊕Sb is associated an(n+1)-dimensional spaceXn+1. SystemSb alone is described
by the generalised eigenvalue equation

B|�i〉 = λiSb|�i〉, i = 1, . . . , n. (1a)

OperatorsB andSb are Hermitian operators acting in the spaceXbn. In addition, we
assume thatSb is positive definite. No other assumption about those operators is made.
Hermiticity of those operators and positive definiteness ofSb guarantees reality of the
eigenvaluesλi and completeness of the corresponding eigenvectors|�i〉. In addition,
eigenvectors|�i〉 can be orthonormalized according to (see appendix):〈

�i
∣∣Sb∣∣�j 〉 = δij , i = 1, . . . , n. (1b)

Let {|r〉}b (r = 1, . . . , n) be an orthonormalized basis inXbn(〈r|s〉 = δrs). In
this basis operatorsB andSb haven × n matrices with matrix elementsBrs = 〈r|B|s〉
andSbrs = 〈r|Sb|s〉, respectively, while ket vector|�i〉 is in this basis represented as
n-component column vector with components�is = 〈s|�i〉. For the sake of simplicity
we will use the same notation for various operators and vectors, and their matrices in this
basis. In particular, eigenvalue equation (1a) can be interpreted as a matrix eigenvalue
equation.

SystemSa that interacts with the systemSb is described by a single normalised
eigenvector|�〉 with the corresponding real eigenvalueE. Formally, one has

A|�〉 = E|�〉 (2a)
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where

A = E|�〉〈�| (2b)

is a Hermitian operator in the one-dimensional spaceXa1 and where|�〉〈�| = Ia is
a projection operator on this space. One can augment the base{|r〉}b of the spaceXbn
with the vector|n+ 1〉 ≡ |�〉 to obtain the set{|r〉} (r = 1, . . . , n + 1) that forms an
orthonormalized basis in the combined spaceXn+1.

Relations (1) and (2) describe systemsSb andSa in isolation, that is without mutual
interaction. The interaction is introduced by the Hermitian operatorsV andP. Those
operators have nonvanishing matrix elements only between vectors in the spaceXbn and
vector|�〉 ∈ Xa1. Hence

V = IbVIa + IaVIb, P = IbPIa + IaPIb, (3a)

whereIb andIa are projection operators on spacesXbn andXa1, respectively. Operators
V andP can be also written as

V = |u〉〈�| + |�〉〈u|, P = |x〉〈�| + |�〉〈x|, (3b)

where

|u〉 =
n∑
r

ur |r〉 ∈ Xbn, |x〉 =
n∑
r

xr |r〉 ∈ Xbn. (3c)

Since vectors|u〉 and|x〉 are contained in the spaceXbn, relation (3b) implies

|u〉 = V|�〉, |x〉 = P|�〉. (3d)

The eigenvalue equation describing the combined systemS subject to the gener-
alised interaction(V,P) is

H|
k〉 = εkS|
k〉, k = 1, . . . , n+ 1 (4a)

where

H = A+ B+ V, S = Ia + Sb + P. (4b)

In order to guarantee the reality of the augmented eigenvaluesεk and completeness
of the corresponding eigenvectors|
k〉, operatorS is required to be positive definite
in the combined spaceXn+1. This requirement imposes a restriction on the admissible
operatorsP according to the condition given in lemma 1. Concerning operatorV, there
is no restriction on this operator, except that it must be Hermitian and that it should
connect vectors in the spaceXbn with the vector|�〉 ∈ Xa1.

If operatorS is positive definite, augmented eigenvectors|
k〉 can be orthonormal-
ized according to

〈
k|S|
l〉 = δkl. (4c)

This relation is analogous to the relation (1b) that applies to the eigenvectors|�i〉
of the eigenvalue equation (1a).
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In the augmented basis{|r〉} operatorsV,P,H andS can be represented as(n+1)
× (n+ 1) matrices

V =
[

0 u

u+ 0

]
, P =

[
0 x

x+ 0

]
, (5a)

H =
[

B u

u+ E

]
, S =

[
Sb x

x+ 1

]
, (5b)

where0 denotes ann × n null matrix. In this matrix formu and x aren-component
column vectors with componentsur = 〈r|u〉 = 〈r|V|�〉 andxr = 〈r|x〉 = 〈r|P|�〉,
respectively, whileu+ andx+ are row vectors, complex conjugated to column vectorsu
andx, respectively.

According to the representation (5b), eigenvalue equation (4a) is eigenvalue equa-
tion (1a) augmented by one row and one column. MatrixB in the original eigenvalue
equation (1a) is augmented by the new(n + 1)th row and column. This new row and
column is represented by the perturbation vectoru and eigenvalueE of the vector|�〉.
Similarly, matrixSb is augmented by a new(n+1)th row and column, and this additional
row and column is represented by the perturbation vectorx.

We will treat systemSb as the original unperturbed system. From this point of
view, “perturbation” is represented by the systemSa and the interaction(V,P). Accord-
ingly, we will assume that the solution to the systemSb (eigenvaluesλi and eigenvectors
|�i〉) is known, and using this solution, we will solve the augmented eigenvalue equa-
tion (4a) that describes augmented systemS. In the same spirit and depending on the
context, we will sometimes refer to augmented eigenvalues and eigenvectors as per-
turbed eigenvalues and eigenvectors, respectively.

2. Solution to the augmentation problem

Augmented eigenvalue equation can be solved following general ideas of the Low
Rank Perturbation (LRP) method [5]. In this method, one has to distinguish two types of
the perturbed eigenvalues and eigenvectors. If the eigenvalueεk of the perturbed system
differs from all the eigenvaluesλi of the unperturbed system, that is ifεk /∈ {λi}, the
eigenvalueεk and the corresponding eigenvector|
k〉 are “cardinal”. Otherwise, the
eigenvalueεk and the corresponding eigenvector or eigenvectors are “singular” [5].

Concerning the unperturbed eigenvaluesλi, it is convenient to distinguishactive
andpassiveeigenvalues [5]. This notation is defined relative to the interaction(V,P).

Let the unperturbed eigenvalueλj beη-degenerate, and let|�jν〉, ν = 1, . . . , η, be
the corresponding unperturbed eigenvectors. The eigenvalueλj is active if at least one
quantity〈�|V − λjP|�jν〉 (ν = 1, . . . , η) is nonzero, otherwise it ispassive. In other
words, the eigenvalueλj is passive if the space spanned by the unperturbed eigenvectors
|�jν〉 (ν = 1, . . . , η) is contained in a null-space of the operator(V− λjP):

(V− λjP)|�jν〉 = 0, ν = 1, . . . , η. (6)
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In the appendix we prove the following two theorems.

Theorem I (Cardinal eigenvalues and eigenvectors). LetB andSb ben × n Hermitian
matrices, letH = A + B + V andS = Ia + Sb + P be (n + 1) × (n + 1) augmented
Hermitian matrices, and letSb andS be positive definite. Let furtherλi (i = 1, . . . , n)
be the eigenvalues of the unperturbed eigenvalue equation (1a), and let|�i〉be the corre-
sponding eigenvectors orthonormalized according to (1b). Then

(a) εk /∈ {λi} is an eigenvalue of the augmented eigenvalue equation (4a) if and
only if it is a root of the functionh(ε)

h(ε) ≡  (ε)+ (β − 1)ε + α + E = 0, (7)

where

 (ε) =
n∑
i

ci

ε − λi , ci = 〈�|V− λiP|�i〉〈�i |V− λiP|�〉, (8)

and where

α=
n∑
i

[
λi〈�|P|�i〉〈�i |P|�〉 − 〈�|P|�i〉〈�i |V|�〉 − 〈�|V|�i〉〈�i |P|�〉

]
,

(9a)

β =
n∑
i

〈�|P|�i〉〈�i |P|�〉.

(b) Letεk /∈ {λi} be an eigenvalue of the augmented eigenvalue equation (4a). This
eigenvalue is nondegenerate, and the corresponding eigenvector is

|
k〉 =
n∑
i

〈�i |V− εkP|�〉
εk − λi |�i〉 + |�〉. (10a)

In addition,|
k〉 satisfies

〈�|V− εkP|
k〉 = εk − E. (11)

The above theorem produces all cardinal (εk /∈ {λi}) eigenvalues and eigenvectors
of the augmented eigenvalue equation (4a). The crucial functionh(ε) is expressed in
terms ofn unperturbed eigenvaluesλi, n coefficientsci, quantitiesα andβ, and the
eigenvalueE. According to (8) and (9a) coefficientsci are nonnegative real numbers,
the quantityβ is also a nonnegative real number, whileα can assume an arbitrary real
value. In order for the matrixS to be positive definite, quantityβ must also satisfy the
conditionβ < 1 (see lemma 1). Coefficientsci and quantitiesα andβ are ultimately
expressed in terms of the unperturbed eigenvaluesλi and in terms of the matrix elements
〈�|V|�i〉 and〈�|P|�i〉. Equivalently, those matrix elements can be considered as scalar
products〈u|�i〉 = 〈�|V|�i〉 and〈x|�i〉 = 〈�|P|�i〉.
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Using relations (A2) and (A3) in the appendix quantitiesα andβ can be written in
a compact form:

α= 〈�∣∣P(Sb)−1
B
(
Sb
)−1

P− V
(
Sb
)−1

P− P
(
Sb
)−1

V
∣∣�〉,

(9b)
β = 〈�∣∣P(Sb)−1

P
∣∣�〉

where(Sb)−1 is the inverse ofSb in the spaceXbn. SinceSb is positive definite this inverse
exists, and from (A2) one finds(Sb)−1 =∑i |�i〉〈�i |.

Formulas (9b) express quantitiesα andβ in the way that is explicitly indepen-
dent on the unperturbed eigenvectors|�i〉. This is advantageous for some theoretical
considerations. Representation (9a) is more convenient for numerical applications.

The case of singular eigenvalues and corresponding eigenvectors is treated in the
following theorem.

Theorem II (Singular eigenvalues and eigenvectors). Assume the same conditions as in
theorem I. Letλj beη-degenerate unperturbed eigenvalue, and let|�jν〉 (ν = 1, . . . , η)
be the corresponding eigenvectors. Then

(a) If the unperturbed eigenvalueλj is active and degenerate(η > 1), thenεk = λj
is a(η− 1)-degenerate eigenvalue of the augmented system. The corresponding(η− 1)
eigenvectors are linear combinations of the unperturbed eigenvectors|�jν〉:

|
〉 =
η∑
ν

Dν|�jν〉 (12a)

where the coefficientsDν satisfy
η∑
ν

〈�|V − εkP|�jν〉Dν = 0. (12b)

If the unperturbed eigenvalueλj is not degenerate(η = 1), the valueεk = λj is
not an eigenvalue of the augmented system.

(b) If the unperturbed eigenvalueλj is passive, thenεk = λj is an eigenvalue of
the augmented system with the following two possibilities:

(b1) If h(εk) �= 0, this eigenvalue isη-degenerate, and the correspondingη eigen-
vectors can be chosen to coincide withη-unperturbed eigenvectors|�jν〉.

|
〉 = |�jν〉, ν = 1, . . . , η; (13)

(b2) If h(εk) = 0, this eigenvalue is(η+1)-degenerate. Firstη eigenvectors corre-
sponding to this eigenvalue are given by (13), while an additional eigenvector
is

|
k〉 =
n∑

i(λi �=εk)

〈�i |V− εkP|�〉
εk − λi |�i〉 + |�〉 (10b)
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wherei (λi �= εk) denotes the summation over alli such thatλi �= εk. This
eigenvector satisfies relation (11) withεk = λj .

In the expression (10b) of the above theorem summation excludes all terms with
λi = εk. Sinceεk = λj is passive, all such terms are formally of the type 0/0. If we make
the convention to neglect those terms, then relation (10b) becomes a special case of the
relation (10a). In addition, conditionh(εk) = 0 is relation (7) withε = λj . This shows
that each root of the functionh(ε) is an eigenvalue of the augmented eigenvalue equation,
either cardinal or singular. If the unperturbed eigenvalueλj is active, the functionh(ε)
has singularity in the pointε = λj , and hence it can have no root in this point. However,
if the unperturbed eigenvalueλj is passive, this function is finite and analytic in the point
ε = λj . In this case, it is possible forh(ε) to have a rootεk = λj ∈ {λi}. This root is
also an eigenvalue of the augmented eigenvalue equation. In conclusion, the set of all
roots to the functionh(ε) contains all cardinal eigenvalues of the augmented eigenvalue
equation. In addition, it may also contain some singular eigenvalues of this equation.

The above two theorems provide complete solution to the matrix augmentation
problem. In order to find eigenvalues and eigenvectors of the augmented eigenvalue
equation, one has first to find roots ofh(ε). Once a particular rootε = εk is obtained,
this root is an augmented eigenvalue, and the corresponding eigenvector is given by rela-
tion (10a). This produces all cardinal and possibly some singular eigenvalues and eigen-
vectors. The remaining singular eigenvalues and eigenvectors are trivial to find. Each
η-degenerate(η > 1) unperturbed eigenvalueλj that is active generates an(η − 1)-
degenerate perturbed eigenvalueεk = λj . The corresponding eigenvectors are given
by relation (12a), where the coefficientsDν satisfy (12b). Eachη-degenerate unper-
turbed eigenvalueλj that is passive generates eitherη- or (η + 1)-degenerate perturbed
eigenvalueεk = λj . First η eigenvectors coincide with theη unperturbed eigenvectors
(equation (13)). The one extra eigenvector, which exists only ifh(λj) = 0, is already ob-
tained during the search for the roots ofh(ε) and the corresponding eigenvectors. This
completes derivation of augmented eigenvalues and eigenvectors by the LRP method.
In addition it shows that the augmentation of the original eigenvalue equation by a sin-
gle row and a single column can change (decrease or increase) the degeneracy of each
particular unperturbed eigenvalueλj at most by one.

Above theorems apply to generalised eigenvalue equations (1a) and (4a) whereSb

is an arbitrary positive definite Hermitian operator acting in the spaceXbn, while V is an
arbitrary Hermitian operator connecting spacesXbn andXa1. Similarly, P is an arbitrary
Hermitian operator connecting those two spaces that satisfies the condition of lemma 1.
All the obtained relations simplify if the corresponding equations are not completely
general. The most important special case isP = 0. In this caseα = β = 0 and hence
h(ε) ≡  (ε)+ E − ε. ConditionP = 0 is relatively mild and it allows for the unper-
turbed eigenvalue equation (1a) to be still of a most general type. There are no restric-
tions on the interactionV that connects spacesXbn andXa1, and the eigenvalue equation
describing the combined system is still a generalised eigenvalue equation, though not of
a most general type. One hasP = 0 in a special but highly important case when instead
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of generalised eigenvalue equations (1a) and (4a) one has standard eigenvalue equations
B|�i〉 = λi|�i〉 andH|
k〉 = εk|
k〉, respectively.

3. Orthonormalization of perturbed eigenvectors

Perturbed eigenvectors (10) and (12) are not orthonormalized. All perturbed eigen-
vectors can be orthonormalized according to (4c). This can be done using relation (1b)
and the propertyP|�〉 ∈ Xbn.

Concerning normalisation, one finds that each cardinal eigenvector should be nor-
malised according to

1√
Wk
|
k〉 (14a)

where|
k〉 is given by (10a) and where (see appendix)

Wk =
n∑
i

|〈�i |V− λiP|�〉|2
(εk − λi)2 + 1− β. (14b)

In a similar way are normalised singular eigenvectors (10b). Singular eigenvec-
tors (12a) are normalised according to

|
〉 = 1√∑
ν D
∗
νDν

η∑
ν

Dν |�jν〉. (14c)

In particular, each singular eigenvector of type (13) is already properly normalised.
Concerning mutual orthogonality of perturbed eigenvectors, eigenvectors|
k〉 and

|
l〉 that correspond to distinct eigenvalues (εk �= εl) are already orthogonal to each
other. This is a consequence of the hermiticity of operatorsH andS, and the fact thatS
is positive definite. Since each cardinal eigenvector is nondegenerate, it is orthogonal to
all other eigenvectors. In particular, if|
k〉 and|
l〉 are distinct cardinal eigenvectors,
they satisfy〈
k|S|
l〉 = 0. If those eigenvectors are normalised one finds

〈
k|S|
l〉 ≡ 1√
WkWl

[
n∑
i

|〈�|V− λiP|�i〉|2
(εk − λi)(εl − λi) + 1− β

]
= 0 (15a)

whereWk andWl are given by (14b).
Similar relation is obtained if|
k〉 is a normalised cardinal eigenvector and if|
l〉

is a normalised singular eigenvector of type (10b), or if both eigenvectors are normalised
singular eigenvectors of type (10b). Another possible combination is that|
k〉 is a nor-
malised cardinal eigenvector while|
l〉 is a normalised singular eigenvector (14c). In
this case one obtains

〈
l|S|
k〉 = 1√
Wk

∑
ν D
∗
νDν

∑η
ν D
∗
ν 〈�jν |V− εlP|�〉
εk − εl = 0. (15b)
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This relation is equivalent to the condition (12b) imposed on the coefficientsDν
that determine singular eigenvector|
l〉.

One can write right hand sides of relations (15) in a simpler form, without nor-
malisation constants. However, written in the above form those relations can be directly
used as a test for the numerical accuracy of the suggested method [6]. In any numerical
calculation due to the finite precision arithmetic there is always some error accumu-
lation. Therefore, calculated eigenvectors|
 ′′k 〉 slightly differ from exact eigenvectors
|
k〉. If |
 ′′k 〉 and|
 ′′l 〉 are calculated eigenvectors that correspond to different eigenval-
ues, they will be only approximately orthogonal to each other. Numerically one obtains
〈
 ′′k |S|
 ′′l 〉 ≈ 0. In order for quantities〈
 ′′k |S|
 ′′l 〉 to be an objective measure of the
numerical error, vectors|
 ′′k 〉 and|
 ′′l 〉 should be normalised.

Since eigenvectors that correspond to distinct eigenvalues are automatically orthog-
onal to each other, relations (14) are sufficient to orthonormalize all cardinal eigenvec-
tors and, in addition, all nondegenerate singular eigenvectors. If there is any degenerate
singular eigenvalueεk = λj , corresponding eigenvectors can be orthonormalized using
some standard orthonormalization procedures such as Gramm–Schmidt orthonormaliza-
tion [1,2] and relations (1b) and (12). This extra orthonormalization should be numeri-
cally simple and easy to perform, since the dimension of the corresponding degenerate
subspace is in most cases much smaller than the dimension of the combined spaceXn+1.

4. Global distribution of perturbed eigenvalues

All cardinal eigenvalues of the augmented eigenvalue equation are roots of the
function h(ε). In order to find efficiently those roots, one has to investigate in more
details a global behaviour of this function. According to the expression (7), each
cardinal eigenvalue lies on the intersection of the function (ε) and a lineg(ε) =
(1 − β)ε − α − E. Conversely, each intersection of (ε) andg(ε) is an eigenvalue
of the augmented eigenvalue equation, either cardinal or singular. Further, the function
 (ε) is continuous and analytic everywhere, except in the pointsε = λj where the un-
perturbed eigenvalueλj is active. If namely this eigenvalue is active, there is at least
one unperturbed eigenvector|�jν〉 such that〈�|V − λjP|�jν〉 �= 0. Hencecj �= 0,
and the function (ε) has a singularity in the pointε = λj . Since each coefficientci
is nonnegative, it follows that if the unperturbed eigenvalueλj is active, functions (ε)
andh(ε) satisfy

lim
ε→λ+j

h(ε) = lim
ε→λ+j

 (ε) = ∞, lim
ε→λ−j

h(ε) = lim
ε→λ−j

 (ε) = −∞ (16a)

whereε→ λ+j andε→ λ−j denotes right and left limits, respectively. If the unperturbed
eigenvalueλj is passive, functions (ε) andh(ε) are finite and analytic in the point
ε = λj .

One also finds

lim
ε→±∞ (ε) = 0. (16b)
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Sinceci � 0 the derivative of a function (ε) is negative, i.e., d (ε)/dε < 0. In
addition, one finds (see appendix):

Lemma 1. Matrix S = Ia + Sb + P is positive definite if and only ifβ = 〈�|P(Sb)−1

P|�〉 satisfiesβ < 1, i.e.,

β ≡
n∑
i

〈�|P|�i〉〈�i |P|�〉 < 1. (17)

According to this lemma, the slope 1−β of a lineg(ε)must be positive. Since the
derivative of the function (ε) is negative, relations (16) and (17) imply

Lemma 2. (a) The functionh(ε) has negative derivative

dh(ε)

dε
< 0 (18a)

on the entire real axis, except in those pointsε = λj where the unperturbed eigenvalue
λj is active.

(b) In the limit ε→±∞ one has

lim
ε→±∞

dh(ε)

dε
= β − 1< 0. (18b)

The functionh(ε) is thus monotonically decreasing function on the entire real axis,
except in those pointsε = λj where the unperturbed eigenvalueλj is active. In such
points the functionh(ε) diverges. Hence and from (7) it follows that if the adjacent
unperturbed eigenvaluesλs and λs+1 are active, and if these eigenvalues differ from
each other, then there is exactly one rootεk of h(ε) in the open interval(λs, λs+1).
This root is a cardinal eigenvalue of the augmented eigenvalue equation, and there is
no other eigenvalue of this equation in the interval(λs, λs+1). According to (18b), the
same applies to the intervals(−∞, λ1) and(λn,∞), provided the extreme unperturbed
eigenvaluesλ1 andλn are active.

More generally, ifλs andλp (λs < λp) are active eigenvalues of the unperturbed
system which are not necessarily adjacent, and if all the intervening eigenvaluesλj ∈
(λs, λp) are passive, then there is exactly one rootε = εk of h(ε) in the open interval
(λs, λp). This root is an eigenvalue of the augmented eigenvalue equation (4a), and this
eigenvalue can be either cardinal or singular. It is singular if it coincides with some
passive unperturbed eigenvalueλj ∈ (λs, λp), otherwise it is cardinal.

This implies that if all the unperturbed eigenvaluesλi (i = 1, . . . , n) are nonde-
generate and active, they are interlaced with the perturbed eigenvaluesεk according to

ε1 < λ1 < ε2 < λ2 < · · · < εn < λn < εn+1. (19)

Relation (19) describes global distribution of the perturbed eigenvalues in the spe-
cial but important case when all eigenvaluesλi of the unperturbed system are nondegen-
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erate and active. Those conditions can be relaxed. If the eigenvalue equation (1a) has
some degenerate and/or passive eigenvaluesλi, there is always an infinitesimal variation
of the matrix elements of a matrixB such that the resulting eigenvalue equation has all
eigenvalues nondegenerate and active. Eigenvalues of this slightly perturbed eigenvalue
equation and the eigenvalues of the corresponding augmented eigenvalue equation sat-
isfy interlacing condition (19). However, each eigenvalue of the eigenvalue equation (1a)
is a continuous function of the matrix elements of the matrixB. Each eigenvalue of the
augmented eigenvalue equation (4a) is also a continuous function of the matrix elements
of the matrixB. Hence we have the following

Interlacing rule. Let the initial eigenvaluesλi and the augmented eigenvaluesεk be
arranged in the nondecreasing order. Then:

(a) Eigenvaluesεk of the augmented system are interlaced with the eigenvaluesλi
of the initial system according to

ε1 � λ1 � ε2 � λ2 � · · · � εn � λn � εn+1. (20a)

(b) If the adjacent unperturbed eigenvaluesλi andλi+1 are distinct and active, then
in the relation (20a) a strict inequality applies

λi < εi+1 < λi+1. (20b)

Concerning point (b) of the above rule, there are additional possibilities that either
one or both of the adjacent unperturbed eigenvaluesλi andλi+1 (λi �= λi+1) is passive.
If this is the case, perturbed eigenvalueεi+1 may coincide with the passive unperturbed
eigenvalue. In order to investigate this case in more details, one has to calculate the
function h(ε) in the point of the passive unperturbed eigenvalue or eigenvalues. For
example, ifλi andλi+1 are adjacent and distinct unperturbed eigenvalues, and ifλi is
passive whileλi+1 is active, one has to calculateh(λi). If h(λi) > 0, and sinceh(ε) is
monotonically decreasing in the interval[λi, λi+1), there is a root ofh(ε) in this interval,
and henceλi < εi+1 < λi+1. Augmented eigenvalueεi+1 is thus cardinal. If however
h(λi) < 0, there is no cardinal eigenvalue in this interval. Hence and due to (20a) one
hasλi = εi+1 < λi+1 and εi+1 is singular. In a similar way one can analyse other
possibilities.

In many cases extreme eigenvaluesε1 andεn+1 are of special interest. Consider
for example the smallest perturbed eigenvalueε1. According to the above analyse one
hasε1 < λ1, unless the unperturbed eigenvalueλ1 is passive and unless in addition
h(λ1) � 0. Thus the augmented eigenvalue equation will decrease the lowest eigen-
valueλ1 whenever this eigenvalue is active. If however this eigenvalue is passive, it will
be decreased by the perturbation if and only ifh(λ1) < 0.

Note finally that interlacing rule depends on the condition (17) that guarantees
matrix S to be positive definite. If this condition is not satisfied, matrixS is not positive
definite, and some of the perturbed eigenvalues may be complex. There is even the
possibility for the perturbed system to have less then (n+ 1) eigenvalues, in which case
this system is defective.
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5. Numerical considerations

Numerically the above suggested method has two important features, relatively
small storage requirement, and relatively small operation count.

Consider first storage requirement. In a standard approach in order to solve gener-
alised eigenvalue equation (4a) one has to store in a computer memory matrix elements
Hij andSij of matricesH andS. If those matrices are real symmetric, and if the sym-
metryHij = Hji andSij = Sji is fully exploited, this requires the storage of approxi-
matelyn2 matrix elements. If those matrices are Hermitian but not real, storage doubles
and equals approximately 2n2. Additional storage is needed in order to perform diago-
nalization and to keep various intermediate results. In all those cases standard storage
requirement is of the orderO(n2). In the LRP approach in order to find the eigenvalues
of the augmented eigenvalue equation (4a) one has to find roots of the functionh(ε).
This function is fully defined byn unperturbed eigenvaluesλi, n real coefficientsci , and
three additional quantitiesα, β andE. Minimum additional storage is needed in order
to obtain roots ofh(ε). The entire storage requirement is hence approximately 2n which
is of the orderO(n). This storage is an order of magnitude smaller than the storage
required in a standard approach.

If besides the eigenvalues the corresponding eigenvectors are also needed, the LRP
storage is slightly enhanced, but it is still of the orderO(n). In conclusion, whether only
eigenvalues or also eigenvectors are required, in both cases LRP storage requirement is
of the orderO(n). This is substantial saving in storage, especially for largen. Conse-
quently, with the LRP approach one can easily treat matrix augmentation problem for
matrices of the order of few millions on a standard PC computer.

Consider now operation count. This quantity is usually expressed in terms of the
number of flops needed to perform a particular algorithm. A flop roughly constitutes the
effort of doing a floating point add, a floating point multiply, and a little subscribing [1].
Thus, the number of flops approximately equals the number of multiplicative operations
(×,÷). Therefore, one can estimate operation count by estimating the number of multi-
plicative operations.

In the LRP approach all cardinal eigenvalues, and in addition some singular eigen-
values of the perturbed eigenvalue equation are roots of the functionh(ε). Hence, the
main numerical load involves the search of those roots. For the sake of simplicity, we
will consider real matrix augmentation problem where matrices involved are real sym-
metric. Generalisation to arbitrary Hermitian matrices is straightforward.

In order to initiate calculation of the roots ofh(ε), one has first to calculate
2n matrix elements〈�|V|�i〉 and 〈�|P|�i〉. In the base{|r〉} one has〈�|V|�i〉 =∑
r 〈�|V|r〉〈r|�i 〉 and〈�|P|�i〉 =∑r 〈�|P|r〉〈r|�i〉. In a most general case involving

real matrices, calculation of these matrix elements requires 2n2 multiplications. How-
ever, in many cases this operation count is much smaller. For example, most of the matrix
elements〈�|V|r〉 and〈�|P|r〉may be zero. Ifn is large this is usually the case, since in
the majority of standard problems vector|�〉 that describes systemSa usually interacts
only with relatively few base vectors|r〉 of the systemSb. As n increases one usually
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finds that the number of nonzero matrix elements〈�|V|r〉 and〈�|P|r〉 is of the order
substantially lower thanO(n), in many cases of the orderO(1). This reduces above
operation count toO(n). In some other cases matrix elements〈�|V|�i〉 and〈�|P|�i〉
may be given in a closed analytical form, which eliminates the corresponding operation
count. Once these matrix elements are known, next step is to construct the function
h(ε). This requires calculation ofn coefficientsci and calculation of the quantitiesα
andβ. Calculation of coefficientsci requires 2n multiplications, while calculation of
quantitiesα andβ requires approximately 3nmultiplications. Hence the construction of
the functionh(ε) requires approximately 5nmultiplications, which is of the orderO(n).
In conclusion, this preparatory phase, which is needed in order to obtain the function
h(ε), requires at mostO(n2) operations (2n2 + 5n multiplications), but it can be as low
asO(n) operations (5n multiplications). This estimate applies to a most general matrix
augmentation problem involving real symmetric matrices. In the important special case
P = 0 one has〈�|P|�i〉 = 0 andα = β = 0. Operation count accordingly decreases
to at most (n2 + n) multiplications, or to as few as onlyn multiplications. Operation
count equals (n2 + n) if one has to calculate matrix elements〈�|V|�i〉 and if in addi-
tion almost all matrix elements〈�|V|r〉 are nonzero. Operation count equalsn if matrix
elements〈�|V|�i〉 area priori known, and it is of the orderO(n) (but higher thann) if
the number of nonzero matrix elements〈�|V|r〉 is of the orderO(1).

Once the functionh(ε) is constructed, next step is to find root or rootsεk of this
function. Most root finding methods start with some initial approximate rootε

(0)
k , which

is then iteratively improved. This iteration requires on averageIt recalculations of the
functionh(ε) and (depending on the method) its derivative for various values ofε. Each
recalculation of the functionh(ε) requires approximatelyn divisions. If the derivative of
h(ε) is also needed, one has to perform an additionaln multiplications. Hence this last
step requires, depending on the method, eitherIt · n or 2· It · nmultiplicative operations
per root. This isO(n) operations per root, orO(n2) operations if all roots ofh(ε) are
required. Once a particular root is obtained, the corresponding eigenvector (10a) can
be easily derived with essentiallyn divisions. Concerning normalisation, the quantity
Wk given by (14b) can be calculated withn additional multiplicative operations. Total
operation count to find all eigenvalues and all normalized eigenvectors is hence of the
orderO(n2). This compares very favourable with the operation count of various direct
matrix diagonalization methods, such as Jacobi, Givens and Householder, which require
O(n3) operations in order to obtain all eigenvalues and/or eigenvectors [1,2]. In addition,
if a single eigenvalue and/or eigenvector is required, and if matrix elements〈�|V|�i〉
and 〈�|P|�i〉 are known, or if the number of nonzero matrix elements〈�|V|r〉 and
〈�|P|r〉 is of the orderO(1), this can be done with as few asO(n) operations.

6. Numerical results

In order to verify the LRP matrix augmentation method and to estimate its per-
formance, a computer program was written by the author. The program was written in
C++, and the calculation was done on a 1.5 GHz Pentium 4 PC computer. In a calcu-
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lation double precision floating point numbers that require eight bytes per number and
that are accurate to approximately 15 significant digits were used. Instead of arbitrary
Hermitian matrices, real Hermitian matrices were considered. Those matrices are sym-
metric. There are essentially no new features if instead of real Hermitian more general
complex Hermitian matrices are treated. The restriction to real matrices is of no conse-
quence as far as the numerical verification of the suggested method is concerned.

Concerning verification of the LRP method, LRP results were directly compared
with the results obtained by the standard diagonalization method. This was done only
for relatively small matrices (n � 1000). Due to the excessive storage requirement, it
was not possible to perform a standard diagonalization on a PC computer in the case
of large matrices. Actual calculation was simulated with random matrices. MatrixB
was constructed as real symmetric matrix with matrix elements chosen as uniform ran-
dom numbers in some predefined interval. In a similar way was constructed matrixSb.
In order for this matrix to be positive definite, diagonal elements ofSb were chosen
as relatively large random positive numbers, while off-diagonal elements were chosen
as relatively small random numbers. With such a choice resulting matrix is diagonally
dominant, and if the intervals for random diagonal and of-diagonal matrix elements are
selected in an appropriate way, it is positive definite. After matricesB and Sb were
constructed, generalised eigenvalue equation (1) was solved in a standard way using the
combination of the Cholesky decomposition and the symmetric QR algorithm [1]. This
was done in two steps. In the first step matrixSb was decomposed by Cholesky decom-
position according toSb = G · GT whereG is a lower triangular matrix and whereGT

is transpose ofG [1]. In this way, generalised eigenvalue equation (1a) was transformed
into a simple eigenvalue equationC|φi〉 = λi|φi〉 whereC = G−1B(GT )−1 and where
|φi〉 = GT |�i〉. In the second step, the obtained eigenvalue equation was solved using
symmetric QR algorithm. This algorithm involves initial Householder tridiagonaliza-
tion followed by the QR algorithm proper [1]. This standard approach that combines
Cholesky decomposition with the symmetric QR algorithm is one of the best methods
to solve generalised symmetric eigenvalue equation. It requires about 7n3 flops [1].
Once the unperturbed eigenvectors|�i〉 are obtained, they were orthonormalized ac-
cording to the relation (1b). Concerning augmented eigenvalue equation, matrix ele-
ments〈�|V|r〉 and〈�|P|r〉 were also constructed as uniform random numbers in some
predefined interval. In order for the matrixS to be positive definite, matrix elements
〈�|P|�i〉 should satisfy the condition (17) of lemma 1. In the base{|r〉} this condi-
tion reads

∑
rp〈�|P|r〉〈r|(Sb)−1|p〉〈p|P|�〉 < 1. Accordingly, random matrix elements

〈�|P|r〉were rescaled in order to satisfy this condition. EigenvalueE was also treated as
random quantity. Once the augmented eigenvalue equation was constructed in this way,
it was solved by the LRP approach and by a standard diagonalization method. In this
way, one could verify LRP eigenvalues and eigenvectors by a direct comparison with
eigenvalues and eigenvectors obtained in a standard way. This comparison did show that
the LRP matrix augmentation method is numerically accurate and reliable.

In order to estimate the performance of the LRP approach, the unperturbed sys-
tem was simulated in the way that is more appropriate for this method. Unperturbed
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eigenvaluesλi were chosen as random numbers in some predefined interval. In a simi-
lar way was chosen eigenvalueE. Matrix elements〈�|V|�i〉 and〈�|P|�i〉 were also
simulated as random numbers, and those later matrix elements were subject to the con-
dition (17) of lemma 1. Next a LRP calculation was performed. This calculation was
repeated for various matrices of the ordern = 102 up to includingn = 5 · 106. In
order to cover this entire range, five different sets of such calculations were done. In
the first set matrices of ordern = 102(102)9 · 102 were considered, in the second
set matrices of ordern = 103(103)9 · 103 were considered, in the third set matrices
of order n = 104(104)9 · 104 were considered, in the forth set matrices of the order
n = 105(105)9 · 105 were considered, while in the fifth set huge matrices of the order
n = 106(106)5 · 106 were considered. The entire calculation was repeated few times
with various choices for predefined intervals for random quantitiesλi, 〈�|V|�i〉 and
〈�|P|�i〉. In this way, one could simulate the case of the weak as well as strong and
very strong interactions. This was done covering few orders of magnitude, starting with
the weak interaction (relatively small quantities〈�|V|�i〉) to very strong interaction
(relatively large quantities〈�|V|�i〉).

According to the above discussion, LRP operation count per eigenvalue and per
eigenvector should be proportional to the dimensionn of the generalised eigenvalue
equation. However, the corresponding times are only approximately proportional to the
operation count. Depending on the matrix dimension and internal computer architec-
ture, some operations are done faster using computer cache, while some require access
to the computer RAM that is slower. Hence average time needed to perform a single
flop depends on the relative speed of cache and RAM memory access, on the amount of
memory that can be stored in the computer cache, on the cache status, and on the dimen-
sionn of matrices involved. In addition, in the case of cardinal eigenvalues, operation
count depends on the number of iterations that are required to obtain the correspond-
ing root of the functionh(ε). This number varies from eigenvalue to eigenvalue, and
for each particular eigenvalueεk it strongly depends on the choice of the initial ap-
proximate eigenvalueε(0)k . According to the interlacing rule each cardinal eigenvalueεk
(2 � k � n) satisfiesλk−1 < εk < λk. In the present computer program, this initial
approximation was chosen asε(0)k = (λk−1+ λk)/2. This is a very crude approximation,
and much better choices, based on some approximate estimation of the perturbed eigen-
value are possible. Nevertheless, this choice is relatively unbiased, and it is good enough
for the assessment of the LRP performance. In view of all above factors obtained times
per eigenvalue and per eigenvector can be only approximately proportional to the matrix
dimensionn.

Typical results of the LRP method are shown in tables 1 and 2. In table 1 are given
times required to calculate a single eigenvalueεk, while in table 2 are given times re-
quired to calculate a single normalised eigenvector|
k〉, once the corresponding eigen-
valueεk is known. In the case of large matrices, calculation of all eigenvalues and/or
eigenvectors was quite time consuming, and therefore in this case only a relatively small
number of randomly selected eigenvalues and eigenvectors were calculated. This is in-
dicated with an asterisk (*) in those tables.



T.P. Živković / Augmentation of the generalisedn× n eigenvalue 365

Table 1
Times (in seconds) needed to calculate a single augmented eigenvalue by the

LRP method.

n 102 103 104 105 106

1 · n 0.000035 0.00036 0.0036 0.035* 0.33*

2 · n 0.000072 0.00075 0.0072 0.070* 0.62*

3 · n 0.00011 0.0011 0.010 0.10* 0.95*

4 · n 0.00015 0.0014 0.014 0.13* 1.32*

5 · n 0.00018 0.0018 0.018* 0.17* 1.68*

6 · n 0.00022 0.0022 0.021* 0.21*

7 · n 0.00026 0.0026 0.025* 0.24*

8 · n 0.00030 0.0029 0.028* 0.28*

9 · n 0.00033 0.0032 0.031* 0.31*

* Times based on the calculation of randomly selected eigenvalues.

Table 2
Times (in seconds) needed to calculate a single augmented eigenvector by the

LRP method.

n 102 103 104 105 106

1 · n 0.0000062 0.000064 0.00067 0.0070* 0.071*

2 · n 0.000013 0.00013 0.0014 0.014* 0.14*

3 · n 0.000019 0.00019 0.0021 0.021* 0.21*

4 · n 0.000025 0.00026 0.0028 0.029* 0.29*

5 · n 0.000032 0.00033 0.0035* 0.035* 0.36*

6 · n 0.000039 0.00040 0.0042* 0.043*

7 · n 0.000044 0.00046 0.0049* 0.050*

8 · n 0.000051 0.00053 0.0056* 0.057*

9 · n 0.000057 0.00060 0.0063* 0.065*

* Times based on the calculation of randomly selected eigenvectors.

Times reported in table 1 are obtained under the assumption that quantities
〈�|V|�i〉 and〈�|P|�i〉 are known. This assumption is in the spirit with the LRP ap-
proach, and it is justified in many cases, especially ifn is large. If those quantities are not
known, and if in addition almost all matrix elements〈�|V|r〉 and〈�|P|r〉 are nonzero,
there is an overall overhead of approximately 2n2 multiplications required to calculate
these quantities. This is an extreme case, and all intermediate cases are possible. Usu-
ally vector |�〉 interacts only withO(1) base vectors|r〉 of the systemSb, and this
overhead reduces toO(n). In the extreme case of theO(n2) overhead, times in table 1
should be interpreted as approximate times per eigenvalue, rather than individual times
required to obtain selected eigenvalue. If all eigenvalues are calculated, main numerical
load is due to multiple iterative recalculations of the functionh(ε), and the per eigen-
value overhead due to the calculation of quantities〈�|V|�i〉 and〈�|P|�i〉 is relatively
small.
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Furthermore, times reported in tables 1 and 2 are average times taken over many
choices of random matrices. For all previous reasons, those times are subject to relatively
large fluctuations. Those fluctuations are particularly large in the case of the eigenvalues
(table 1) since for eachn the average number of iterations per eigenvalue and hence
the operation count depends on the selected random matrix. However, in the case of
the corresponding eigenvectors (table 2) operation count depends only on the matrix
dimensionn, and not on the particular choice of this matrix. Fluctuations are hence
smaller and they are mainly due to variations in the use of computer cache.

Times required to calculate a particular eigenvalue are in general slightly better
than linear (table 1). This indicates that on average large matrices require slightly smaller
number of iterations per eigenvalue. This result of course depends on the particular
choice of the initial approximationε(0)k and it may vary with this choice. Nevertheless,
the deviation from linearity in table 1 is very mild over many orders of magnitude, and
this strongly suggests that the average operation count per eigenvalue is indeed propor-
tional to n. In addition, one can devise an algorithm that significantly improves con-
vergence and stability of the iterative calculation of the eigenvalues [6]. Thus, times
reported in table 1 can be substantially reduced. Simultaneously fluctuations of the op-
eration counts per eigenvalue are also reduced. The details of this improved algorithm
for the calculation of the augmented eigenvalues will be given elsewhere [6].

Once the particular eigenvalueεk is known, operation count to obtain the corre-
sponding eigenvector is to the very good approximation proportional ton. As shown
in table 2, average time per eigenvector is slightly worst than linear. This result can be
attributed to the relatively better use of computer cache in the case of small matrices. If
the matrix is sufficiently small, it is possible for all input data to fit into computer cache,
while if the matrix is large this is not possible. Hence, on average, time required to per-
form a single flop is smaller in the case of a small matrix, and it should slowly increase
with the increase ofn. The deviation from linearity in table 2 is however very mild over
many orders of magnitude, and hence one can conclude that the LRP operation count
per eigenvector is to a very good approximation proportional ton.

As an example, consider the casen = 1000. In this case, LRP algorithm requires
about 0.42 seconds in order to obtain all eigenvalues and eigenvectors of the augmented
eigenvalue equation. Standard method that combines the Cholesky decomposition with
the symmetric QR algorithm [1] requires about 120 seconds in order to solve the same
problem. The casen = 1000 was the largest case to be solved by this standard method.
If all solutions are required, relative advantage of the LRP approach increases linearly
with the increase ofn. Thus already in the casen = 104 LRP approach requires about
43 seconds in order to find all augmented solutions, while the above standard algorithm
would require, provided it could be done on a PC computer, more than 33 hours. Rela-
tive advantage of the LRP approach is even more pronounced if only a single eigenvalue
and/or eigenvector is required. If matrix elements〈�|V|�i〉 and〈�|P|�i〉 that define
augmented interaction are given by the conditions of the matrix augmentation problem,
and if n = 104, one needs only about 0.0043 seconds in order to obtain any particu-
lar augmented eigenvalue and the corresponding eigenvector. If matrices are as large
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asn = 106, this time increases to only about 0.4 seconds. Even when matrix elements
〈�|V|�i〉 and〈�|P|�i〉 are not known, operation count to obtain any particular eigen-
value and/or eigenvector is still very small and of the orderO(n), provided vector|�〉
interacts only with relatively few base vectors|r〉 of the systemSb.

7. Conclusions

Augmentation of the generalisedn×n eigenvalue equationB|�i〉 = λiSb|�i〉 (i =
1, . . . , n) by a single row and a single column to the generalised(n+1)(n+1) eigenvalue
equationH|
k〉 = εkS|
k〉 (k = 1, . . . , n + 1) is considered. Following ideas of the
LRP approach [5], the solution of the augmented eigenvalue equation is expressed in a
closed form in terms of the eigenvaluesλi and orthonormalized eigenvectors|�i〉 of the
original eigenvalue equation.

It is found that the operation count to obtain all augmented eigenvalues and all
augmented eigenvectors by this method is of the orderO(n2). Other presently known
methods usually requireO(n3) operations in order to obtain all augmented eigenvalues
and eigenvectors. Even in the case when only a single eigenvalue and/or eigenvector
is required, operation count of those other methods is still higher thanO(n2). Unless
matrices involved are of some special kind, such as sparse matrices, or unless the per-
turbation is small, operation count to find an arbitrary eigenvalue and/or eigenvector
is again of the orderO(n3). The problem is substantially more complex in the case
of the generalised eigenvalue equation. However, LRP method in many cases requires
onlyO(n) operations in order to find any particular eigenvalue and/or eigenvector of the
generalised eigenvalue equation. This operation count is as low asO(n) if matrix ele-
ments〈�|V|�i〉 and〈�|P|�i〉 are known, or if the number of nonzero matrix elements
〈�|V|r〉 and〈�|P|r〉 is of the orderO(1). First assumption applies to some problems
involving huge matrices, when matrix elements〈�|V|�i〉 and〈�|P|�i〉 are given in an
analytic closed form. Second assumption applies to the case when systemSa described
by the vector|�〉 interacts only with relatively few base vectors|r〉 of the systemSb.
This is usually the case in most practical problems. In conclusion, if all eigenvalues
and/or eigenvectors are required, LRP solution to the matrix augmentation problem is
usually one order of magnitude faster than other presently known methods. If only a sin-
gle eigenvalue and/or eigenvector is required, in many cases of interest, LRP approach
is two orders of magnitude faster than other methods.

The storage requirement of the LRP approach is also favourable. Direct diagonal-
ization methods usually require the storage of matrix elements of all matrices involved.
This is of the orderO(n2). However, the storage requirement of the LRP approach is
of the orderO(n). Hence, one can treat by these method very large matrices. In the
present manuscript, matrices as large as 5· 106 × 5 · 106 were considered on a standard
PC computer.

Matrix augmentation problem naturally arises whenever one knows a solution to
an eigenvalue equation and one wants to improve this solution by the extension of the
initial vector space with some additional vectors. Many practical problems are of this
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kind. For example, one may know the solution of some MO calculation in a selected
base set of atomic orbitals. This solution can be always improved with the inclusion
of additional atomic orbitals in the original basic set. Relative importance of candidate
orbitals and their influence on the resulting eigenvalues and eigenvectors can be very
efficiently analysed by the suggested LRP method.

Appendix

A.1. Proof of theorems I and II

If Sb is Hermitian and positive definite inXbn, (S
b)−1/2 is also Hermitian and posi-

tive definite. Eigenvalue equation (1a) is hence equivalent to

B0|φi〉 = λi|φi〉 (A1)

where

B0 =
(
Sb
)−1/2

B
(
Sb
)−1/2

, |φi〉 =
(
Sb
)1/2|�i〉. (A1′)

Hermiticity of B andSb implies hermiticity ofB0, and the eigenvaluesλi of the
unperturbed equation (1a) are hence real. Further, eigenvectors|φi〉 of B0 can be or-
thonormalized according to〈φi |φj 〉 = δij , which implies (1b). The set{|�i〉} is hence
complete. Similar conclusion applies to the perturbed eigenvalue equation (4a).

Define operator

Ib =
n∑
i

|�i〉〈�i |Sb. (A2)

Using (1b) one findsIb|�i〉 = |�i〉 for each eigenvector|�i〉 of the eigenvalue
equation (1a). Since these eigenvectors form a complete set inXbn, operatorIb is a unit
operator in this space. Hence

I = Ib + |�〉〈�| (A2′)

is a unit operator in the augmented spaceXn+1. In a similar way, one obtains identity

B =
n∑
i

Sb|�i〉λi〈�i |Sb. (A3)

We now derive theorems I and II following general ideas of the LRP approach [5].
Relations (4) and (3) imply[

B+ (V− εkP)|�〉〈�| + |�〉〈�|(V − εkP)+ (E − εk)|�〉〈�|
]|
k〉 = εkSb|
k〉.

Multiplying this expression from left by〈�i |, and using (1a) and the orthogonality
〈�i |�〉 = 0, one finds

(εk − λi)
〈
�i
∣∣Sb∣∣
k〉 = 〈�i |V− εkP|�〉〈�|
k〉, i = 1, . . . , n. (A4)
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Multiplying the same expression with〈�| and using properties〈�|B = 〈�|Sb = 0
and〈�|V|�〉 = 〈�|P|�〉 = 0 one obtains

〈�|V− εkP|
k〉 + (E − εk)〈�|
k〉 = 0. (A5)

Relations (A4) and (A5) are our starting relations for the derivation of theorems I
and II.

Cardinal eigenvalues (εk /∈ {λi})
Let εk /∈ {λi} be an eigenvalue of the perturbed eigenvalue equation (4a). Divide

(A4) by (εk − λi) (i = 1, . . . , n), multiply the obtained relation by|�i〉 and sum overi
to obtain:

n∑
i

|�i〉
〈
�i
∣∣Sb∣∣
k〉 = 〈�|
k〉 n∑

i

〈�i |V− εkP|�〉
εk − λi |�i〉.

Adding to both sides of this relation|�〉〈�|
k〉 and using (A2) one finds:

|
k〉 = 〈�|
k〉
n∑
i

〈�i |V− εkP|�〉
εk − λi |�i〉 + 〈�|
k〉|�〉. (A6)

Since|
k〉 is nontrivial, one must have〈�|
k〉 �= 0. Without loss of generality
one can choose〈�|
k〉 = 1. With this choice (A6) reduces to (10a) while (A5) reduces
to (11).

Next one has to determine the perturbed eigenvalueεk. Multiplying (10a) from left
by 〈�|(V− εkP) one obtains

〈�|V − εkP|
k〉 =  0(εk), (A7)

where

 0(ε) =
n∑
i

〈�|V− εP|�i〉〈�i |V− εP|�〉
ε − λi , ε /∈ {λi}. (A8)

Relation (A5) and condition〈�|
〉 = 1 imply

 0(εk) = εk − E. (A9)

Eigenvalueεk is hence a root of (A9). In order to facilitate numerical evaluation
of the function 0(ε) for multiple values ofε, it is convenient to eliminate dependence
on ε from the numerator of a sum in (A8). Using the identity

(a − εb)(a∗ − εb∗)= (a − λb)(a∗ − λb∗)+ (λ− ε)[(a − λb)b∗ + (a∗ − λb∗)b]
+ (λ− ε)2bb∗

one finds

 0(ε) =  (ε)+ α + εβ, (A10)
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where the function (ε) is given by (8) while the quantitiesα andβ are given by (9a).
Relation (A9) is hence equivalent to

 (εk) = (1− β)εk − E − α
which is condition (7).

This proves that a necessary condition forεk /∈ {λi} to be an eigenvalue of the
perturbed eigenvalue equation (4a) is that it should satisfyh(εk) = 0 and that the cor-
responding eigenvector is given by (10a). The inverse is also true. Ifεk /∈ {λi} satisfies
h(εk) = 0, then according to the above derivation it is an eigenvalue of the augmented
equation (4a), and (10a) is the corresponding eigenvector. This completes the proof of
theorem I.

Singular eigenvalues (εk ∈ {λi})
Let εk = λj be a singular eigenvalue of the perturbed eigenvalue equation (4a).

Let furtherλj be aη-degenerate eigenvalue of the original unperturbed system, and let
|�jν〉 (ν = 1, . . . , η) be the corresponding unperturbed eigenvectors. Insertingεk = λj
in relation (A4) one obtains fori = j

〈�jν |V− εkP|�〉〈�|
k〉 = 0, ν = 1, . . . , η. (A11)

Dividing (A4) by (εk − λi) (λi �= εk), multiplying the obtained relation by|�i〉
and summing overi one finds:

n∑
i(λi �=εk)

|�i〉
〈
�i
∣∣Sb∣∣
k〉 = n∑

i(λi �=εk)

〈�i |V− εkP|�〉〈�|
k〉
εk − λi |�i〉.

Adding to both sides of this relation|�〉〈�|
k〉+∑ν |�jν〉〈�jν |Sb|
k〉 and using
(A2) one finds

|
k〉 = 〈�|
k〉
n∑

i(λi �=εk)

〈�i |V− εkP|�〉
εk − λi |�i〉 + 〈�|
k〉|�〉 +

η∑
ν

Dν|�jν〉 (A12)

where

Dν = 〈�jν |Sb|
k〉, ν = 1, . . . , η. (A12′)

Relation (A12) expresses the perturbed eigenvector|
k〉as a linear combination of
the unperturbed eigenvectors|�i〉 and a vector|�〉. Next one has to determine unknown
coefficients〈�|
k〉 andDν.

Multiplying (A12) from left by 〈�|(V− εkP) one obtains

〈�|V− εkP|
k〉 = 〈�|
k〉 0(εk)+
η∑
ν

Dν〈�|V− εkP|�jν〉 (A13)
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where

 0(εk) =
n∑

i(λi �=εk)

〈�|V− εkP|�i〉〈�i |V− εkP|�〉
εk − λi . (A8′)

Relation (A8′) extends the definition of the function 0(ε) to the pointsε ∈ {λi}.
If ε /∈ {λi} this function is defined according to (A8), while ifε ∈ {λi} it is defined
according to (A8′). Note that ifλj is active expression (A8) has a pole in a pointε = λj .
The function 0(ε) is hence not continuous in this point. However, ifλj is passive,
expression (A8) is finite in the pointε = λj and one finds that the function 0(ε) is
continuous and analytic in this point.

We now distinguish two cases. The eigenvalueλj can be either active or passive.

Case I: the eigenvalueλj is active
If the unperturbed eigenvalueλj is active, there is at least one unperturbed eigen-

vector |�jν〉 such that〈�|V− λjP|�jν〉 �= 0. Hence (A11) implies〈�|
k〉 = 0. In-
serting into (A12) one obtains|
k〉 = ∑

ν Dν|�jν〉. Further, (A5) implies〈�|V −
λjP|
k〉 = 0 and (A13) thus reduces to (12b). This proves that if the singular eigen-
valueλj = εk is active, all the corresponding eigenvectors are linear combinations (12a)
of the unperturbed eigenvectors|�jν〉 with the coefficientsDν that satisfy (12b). The
inverse is also true. If|
〉 is a linear combination (12a) of the unperturbed eigenvectors
|�jν〉 with the coefficientsDν that satisfy (12b), it is an augmented eigenvector corre-
sponding to the eigenvalueεk = λj . Thus ifλj is aη-degenerate unperturbed eigenvalue,
εk = λj is a (η − 1)-degenerate perturbed eigenvalue. In particular, if the unperturbed
eigenvalueλj is nondegenerate(η = 1), εk = λj is not the eigenvalue of the perturbed
system.

Case II: the eigenvalueλj is passive
If the unperturbed eigenvalueλj is passive, all quantities〈�|V − λjP|�jν〉 van-

ish and (A11) does not imply〈�|
k〉 = 0. There are hence two possibilities, either
〈�|
k〉 = 0 or 〈�|
k〉 �= 0.

If 〈�|
k〉 = 0, we obtain similar result as in the case whenλj is active. However,
sinceλj is now passive, there is no condition (12b) on the coefficientsDν. Hence all the
unperturbed eigenvectors|�jν〉 are also the perturbed eigenvectors.

If 〈�|
k〉 �= 0 one can without loss of generality choose〈�|
k〉 = 1. In addition,
and since|�jν〉 are already shown to be the perturbed eigenvectors, one can in the re-
lation (A12) chooseDν = 0 (ν = 1, . . . , η). With this choice relation (A12) reduces
to (10b), while relation (A13) reduces to

 0(λj ) = 〈�|V− λjP|
k〉 (A14)

which is relation (A7) withεk = λj .
In analogy to (A10) one finds that the quantity 0(λj ) can be written as

 0(λj) =  (λj)+ α + λjβ
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where

 (λj) =
∑

i(λi �=λj )

〈�|V− λiP|�i〉〈�i |V− λiP|�〉
λj − λi .

Since eigenvalueλj is passive the function (ε) is continuous and analytic in the
point ε = λj . Further, (A5) implies〈�|V − λjP|
k〉 = λj − E which is equation (11)
with εk = λj . Inserting into (A14) one finally obtains

 (λj) = (1− β)λj − α − E.
This proves that in order for the vector (10b) to be an eigenvector of the perturbed

system,εk = λj should satisfyh(εk) = 0. One easily shows that the inverse is also true,
if εk = λj satisfiesh(εk) = 0, then the vector (10b) is an eigenvector corresponding to
this eigenvalue. This completes the proof of theorem II.

A.2. Proof of relations (14) and (15)

Using property (1b) one finds that each cardinal eigenvector should be normalised
according toW−1/2

k |
k〉 where|
k〉 is given by (10a) and where

Wk =
n∑
i

|〈�i |V− εkP|�〉|2
(εk − λi)2

+
n∑
i

〈�i |V− εkP|�〉〈�|P|�i〉 + 〈�i |P|�〉〈�|V− εkP|�i〉
εk − λi + 1.

With some algebra this expression can be transformed into (14b). One also finds
that normalised cardinal eigenvectors|
k〉 and|
l〉 should satisfy

〈
k|S|
l〉 ≡ 1√
WkWl

{
n∑
i

[ 〈�|V− εkP|�i〉〈�i |V− εlP|�〉
(εk − λi)(εl − λi)

+ 〈�|V− εkP|�i〉〈�i |P|�〉
εk − λi

+ 〈�|P|�i〉〈�i |V− εlP|�〉
εl − λi

]
+ 1

}
= 0.

This expression is equivalent to (15a). In a similar way, if|
〉 is singular eigenvec-
tor (14c) with the eigenvalueεl = λj and|
k〉 is normalised cardinal eigenvector, one
finds

〈
|S|
k〉 = 1√
Wk

∑
ν D
∗
νDν

[∑
ν D
∗
ν 〈�jν |V− εkP|�〉
εk − λj +

∑
ν

D∗ν 〈�jν |P|�〉
]

which is equivalent to (15b).
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A.3. Proof of lemma 1

If matrix S = Ia +Sb+P is positive definite then〈
|S|
〉 > 0 for each nontrivial
vector |
〉 ∈ Xn+1. One can write vector|
〉 as a sum|
〉 = |
b〉 + yn+1|�〉 where
|
b〉 ∈ Xbn and whereyn+1 = 〈�|
〉 is the (n + 1)th component of the vector|
〉.
Hence

〈
|S|
〉 = 〈
b∣∣Sb∣∣
b〉+ y∗n+1

〈
�
∣∣P∣∣
b〉+ yn+1

〈

b
∣∣P∣∣�〉+ y∗n+1yn+1 > 0. (A15)

There are two possibilities, eitheryn+1 = 0 oryn+1 �= 0. If yn+1 = 0 relation (A15)
reduces to〈
|S|
〉 = 〈
b|Sb|
b〉 > 0. SinceSb is by assumption positive definite in
Xb, this relation is true for each nontrivial|
b〉 ∈ Xb. If yn+1 �= 0, one can normalise
vector|
〉 in such a way thatyn+1 = 1. Hence

〈
|S|
〉 = 〈
b∣∣Sb∣∣
b〉+ 〈�∣∣P∣∣
b〉+ 〈
b∣∣P∣∣�〉+ 1> 0. (A15′)

This expression is a function of|
b〉 ∈ Xb, and it has a minimum for some vector
|
b0〉. The variation of the right hand side of (A15′) should vanish for|
b〉 = |
b0〉, i.e.,
δ〈
b0 |Sb|
b0〉 + δ〈�|P|
b0〉 + δ〈
b0 |P|�〉 = 0. From this condition one finds|
b0〉 =−(Sb)−1P|�〉 and hence〈
b0 +�|S|
b0 +�〉 = 1 − 〈�|P(Sb)−1P|�〉. Thus if the
matrix S is positive definite, one must have〈�|P(Sb)−1P|�〉 < 1. The inverse is also
true. Assume that〈�|P(Sb)−1P|�〉 < 1 and let vector|
〉 satisfyyn+1 = 1. One can
write this vector as a linear combination|
〉 = c|
b0〉 + |δ
〉 + |�〉 wherec is some
constant, and where the variation|δ
〉 is contained in the spaceXbn and it is orthogonal
to the vector|
b0〉(〈δ
|S|
b0〉 = 0, |δ
〉 ∈ Xbn). This implies

〈
|S|
〉 = 1+ [|c|2− (c + c∗)]〈�∣∣P(Sb)−1
P
∣∣�〉+ 〈δ
∣∣Sb∣∣δ
〉.

Since Sb is by assumption positive definite, one has〈δ
|Sb|δ
〉 � 0. Fur-
ther, for each complexc one has[|c|2− (c + c∗)] � −1. Hence〈
|S|
〉 � 1 −
〈�|P(Sb)−1P|�〉. This proves that if〈�|P(Sb)−1P|�〉 < 1 one has〈
|S|
〉 > 0 for
each vector|
〉 ∈ Xn+1 which satisfiesyn+1 �= 0. If howeveryn+1 = 0, then one directly
obtains〈
|S|
〉 = 〈
|Sb|
〉 > 0. Thus for each nontrivial|
〉 one has〈
|S|
〉 > 0,
and matrixS is hence positive definite.
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[5] T.P. Živković, Theor. Chim. Acta 76 (1989) 331–351; Croat. Chem. Acta 72(4) (1999) 925–944;

J. Math. Chem. 4 (1990) 143–153; 28(1–3) (2000) 267–285.
[6] T.P. Živković, in preparation.


