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Generaliseth x n eigenvalue equatioB|®;) = A,Sb|d>,~) (i =1,...,n) whereB and
sP aren x n Hermitian matrices whil&? is in addition positive definite is considered. This
equation is augmented to a generaliged- 1) (n + 1) eigenvalue equatioH | W) = &;S|¥y)
(k =1,...,n + 1) where Hermitian matriceld andS represent matrice® andS?, respec-
tively, augmented by one additional row and one additional column. It is shown how the
eigenvalues; and the eigenvectorsl;) of the augmented eigenvalue equation can be ex-
pressed in terms of the eigenvalugsand the eigenvectorsb;) of the original eigenvalue
equation. Operation count to obtain by this method all augmented eigenvalues and eigenvec-
tors is of the orde0 (n2). Unless matrices involved are of some special kind such as sparse
matrices or alike, this operation count is one order of magnitude smaller than operation count
required by other presently known methods. In many practical cases operation count to ob-
tain a single selected eigenvalue and/or eigenvector by this method is of thetaiderin
the case of the generalised eigenvalue equation, all other methods usually requir@ @Jain
operations, even if only a single eigenvalue and/or eigenvector is required. Thus in many cases
of interest operation count to obtain a selected eigenvalue and/or eigenvector by this method
is two orders of magnitude smaller than operation count required by other methods.

KEY WORDS: matrix augmentation, generalised eigenvalue equation, eigenvalue problem,
perturbation

1. Introduction

Consider the following problem: The solution of an eigenvalue equation in some
base{|¢;)} (i = 1,...,n) is known. One would like to increase this base with one
additional vectot®) = |¢,,1) in order to improve accuracy of this solution. In general,
there may be many candidates for this additional vector, and one would like to find the
best one in a most efficient way. For example, base ve¢dorsan be atomic orbitals,
while the eigenvectors and eigenvalues of the eigenvalue equation represent molecular
orbitals and their energies. One would like to find out how the inclusion of an additional
atomic orbital|®) influences those molecular orbitals and their energies. As another
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example, assume that base veclgF$ are resonance structures in the VB approach and

we are looking for the VB ground state. We would like to increase the base set with

an additional resonance structure in such a way as to decreases ground state energy as
much as possible. Here again there is usually a large number of candidate resonance
structures. In addition, VB resonance structures are in general not orthogonal to each
other, and the corresponding eigenvalue equation is a generalised eigenvalue equation of
atypeH|¥) = AS|¥) whereSis positive definite matrix.

In this and similar situations one can use standard approach to diagonalize the aug-
mented eigenvalue equation separately with each candidate basg&@gctétandard di-
agonalization methods such as Householder, Jacobi or Givens rébjuite operations
in order to find alln eigenvalues. Additional operation count to find the corresponding
eigenvectors is also (n°) [1,2]. Those methods do not apply directly to the generalised
eigenvalue equation. In order to solve such an equation one usually has to transform it
into a normal eigenvalue equation. The obtained eigenvalue equation is then solved in a
standard way. I§is symmetric positive definite matrix, this transformation can be most
efficiently done by Cholesky decomposition [1]. However this decomposition alone re-
quiresn®/6 operations. In addition, there is yet another operation count needed for the
construction of the final eigenvalue equation that is again of the @de?).

In many cases one has to find only one or only a few selected eigenvalues and/or
eigenvectors. Direct diagonalization methods are not particularly suitable for such prob-
lems. In the case when only a single solution is required, some other method, such as
the power method, the Davidson algorithm, the Lanczos method, or the perturbation ex-
pansion is usually more efficient. In the power method, one repeatedly calculates the
action of a given matrix to previously obtained vectors. Each iteration reqaites)
operations. The number of iterations needed to obtain a required accuracy increases
with n. The total operation count is hence higher th@m?) but lower thanO (n°).
However, the power method can be directly applied only for the calculation of extreme
eigenvalues. In order to find an arbitrary eigenvalue by this method, one has to calculate
matrix inverse, which is again of the ordéx(»°®) [1,2]. The Lanczos method is more
efficient than the power method. Each iterative step of this method reqized op-
erations, and intermediate results usually converge to extreme eigenvalues already after
a few iterations [1]. Lanczos algorithm is hence faster than®) if only a few extreme
eigenvalues are required. However, this method is agdie®) if an arbitrary eigen-
value and/or eigenvector is needed. Davidson’s algorithm [3] is usually a method of
choice in the large scale ClI calculations [4]. Operation count of this algorithm is also
less thenO (n°) if only a few eigenvalues and eigenvectors are required [4]. However,
this method highly relies on the sparsity of the Hamiltonian. Finally, the perturbation
expansion is in general also at least:®). It is less thanO (n®) only if the perturbation
is so small that higher expansion terms can be neglected, or if the matrices involved are
of some special kind, such as sparse matrices or alike. Thus all those methods are of
the order higher tha® (n?), even if only one eigenvalue and/or eigenvector is required.

In addition, those methods apply only to a standard eigenvalue equation. In the case
of the generalised eigenvalue equation, the problem is much more complex. Additional
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Figure 1. Interaction of a one-dimensional systSfhwith the n-dimensional systens’. Systems“
is described by a single eigevect®) with the eigenvalueE. SystemS? is described by a generalised

eigenvalue equation (1a). Generalised interactiofvid), and the combined system is described by the
generalised eigenvalue equation (4).

operation count that is required is usually of the or@¢r?), even if only a single eigen-

value and/or eigenvector is required. For large matrices this is very time consuming. Itis

therefore desirable to have some more efficient method to treat this and similar problems.
The problem of the augmentation of the generalised eigenvalue equation can be

formulated in terms of the interaction of a one-dimensional quantum syStemith

the n-dimensional quantum syste&f (see figure 1). With a systeisf’ is associated a

one-dimensional spacg{ and with a systens” is associated an-dimensional space

X’ Spacesx¢ and X% are orthogonal to each other, and with a combined system

S¢ @ S is associated an + 1)-dimensional spac¥,. ;. SystemS? alone is described

by the generalised eigenvalue equation

B|®;,) = 1,S|®,), i=1...,n. (1a)

Operator8 andS’ are Hermitian operators acting in the space In addition, we
assume tha®’ is positive definite. No other assumption about those operators is made.
Hermiticity of those operators and positive definitenes§’ofjuarantees reality of the
eigenvalues.; and completeness of the corresponding eigenve¢tbys In addition,
eigenvectorg®;) can be orthonormalized according to (see appendix):

(CD,|Sb|CDj>=5,], l=1,,n (1b)

Let {|r)}, (* = 1,...,n) be an orthonormalized basis X’((r|s) = §,5). In
this basis operatorB andS’ haven x n matrices with matrix element,; = (r|B|s)
and S, = (r|S|s), respectively, while ket vectgid;) is in this basis represented as
n-component column vector with componedts = (s|®;). For the sake of simplicity
we will use the same notation for various operators and vectors, and their matrices in this
basis. In particular, eigenvalue equation (1a) can be interpreted as a matrix eigenvalue
equation.

SystemS* that interacts with the syste is described by a single normalised
eigenvectoll®) with the corresponding real eigenvalie Formally, one has

A|®) = E|©) (2a)
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where
A = E|0)(O| (2b)

is a Hermitian operator in the one-dimensional spa¢eand where|®)(©] = 1 is

a projection operator on this space. One can augment the{pageof the spacex?’

with the vector|n + 1) = |©) to obtain the sef|r)} * = 1,...,n + 1) that forms an
orthonormalized basis in the combined spAGe;.

Relations (1) and (2) describe systefifsandS¢ in isolation, that is without mutual
interaction. The interaction is introduced by the Hermitian operatoesxd P. Those
operators have nonvanishing matrix elements only between vectors in theX§pane
vector|®) € X{. Hence

V = 1PVIC 4 19vI°, P=I°Pl* +19PI®, (3a)
wherel® and|® are projection operators on spacésand X¢, respectively. Operators
V andP can be also written as

V = |u}(®] + |©)(ul, P = |x)(®] + [©){x]|, (3b)

where

n

Uy =>"ulryeXxl  X)=) xlr)eX.. (3¢)

r

Since vectorgu) and|x) are contained in the spacg, relation (3b) implies
lu) =V[O), x) = P|®). (3d)

The eigenvalue equation describing the combined syslesubject to the gener-
alised interactionV, P) is

HW,) =&SI¥), k=1,...,n+1 (4a)
where
H=A+B+V, S=1“+S +P. (4b)

In order to guarantee the reality of the augmented eigenvajumsd completeness
of the corresponding eigenvector, ), operatorS is required to be positive definite
in the combined spack, ;. This requirement imposes a restriction on the admissible
operators according to the condition given in lemma 1. Concerning opeNfdhere
iS no restriction on this operator, except that it must be Hermitian and that it should
connect vectors in the spag& with the vector®) € X§.

If operatorSis positive definite, augmented eigenvectdbs) can be orthonormal-
ized according to

(Wi |SIW;) = 6. (4c)

This relation is analogous to the relation (1b) that applies to the eigenvedtors
of the eigenvalue equation (1a).
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In the augmented basfg)} operatorsV, P, H andS can be represented as+ 1)
x (n + 1) matrices
o p [0 X (52)
lut o)’ Ixt oo’

B u S x
H:[u+ E} S:[x+ 1], (5b)

whereO denotes am x n null matrix. In this matrix formu andx are n-component
column vectors with components = (r|u) = (r|V|®) andx, = (r|x) = (r|P|®),
respectively, whilaut andx™* are row vectors, complex conjugated to column vectors
andx, respectively.

According to the representation (5b), eigenvalue equation (4a) is eigenvalue equa-
tion (1a) augmented by one row and one column. Mdrix the original eigenvalue
equation (1a) is augmented by the néw+ 1)th row and column. This new row and
column is represented by the perturbation vecatand eigenvalu& of the vector|®).
Similarly, matrixS’ is augmented by a ne + 1)th row and column, and this additional
row and column is represented by the perturbation vector

We will treat systemS? as the original unperturbed system. From this point of
view, “perturbation” is represented by the syst8fnand the interactioiV, P). Accord-
ingly, we will assume that the solution to the systS§fn(eigenvalues.; and eigenvectors
|®;)) is known, and using this solution, we will solve the augmented eigenvalue equa-
tion (4a) that describes augmented syst®min the same spirit and depending on the
context, we will sometimes refer to augmented eigenvalues and eigenvectors as per-
turbed eigenvalues and eigenvectors, respectively.

2. Solution to the augmentation problem

Augmented eigenvalue equation can be solved following general ideas of the Low
Rank Perturbation (LRP) method [5]. In this method, one has to distinguish two types of
the perturbed eigenvalues and eigenvectors. If the eigenvahfehe perturbed system
differs from all the eigenvalues; of the unperturbed system, that iseif ¢ {1;}, the
eigenvalueg, and the corresponding eigenvectdr,) are “cardinal”. Otherwise, the
eigenvalues, and the corresponding eigenvector or eigenvectors are “singular” [5].

Concerning the unperturbed eigenvalugsit is convenient to distinguishctive
andpassiveeigenvalues [5]. This notation is defined relative to the interaaharP).

Letthe unperturbed eigenvaliie ben-degenerate, and lgb;,), v=1,...,n, be
the corresponding unperturbed eigenvectors. The eigenkaliseactiveif at least one

quantity (®|V — A;P|®;,) (v = 1,..., n) is nonzero, otherwise it igassive In other
words, the eigenvaluk; is passive if the space spanned by the unperturbed eigenvectors
|®;,) (v=1,...,n)is contained in a null-space of the operatdr— 1 ;P):
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In the appendix we prove the following two theorems.

Theorem | (Cardinal eigenvalues and eigenvectors). BetndS’ ben x n Hermitian
matrices, leH = A4+ B+VandS=1“4+S +Pbe(n + 1) x (n + 1) augmented
Hermitian matrices, and 1&” andS be positive definite. Let furthex; i = 1,...,n)
be the eigenvalues of the unperturbed eigenvalue equation (1a), ad) ket the corre-
sponding eigenvectors orthonormalized according to (1b). Then

(@) e ¢ {);} is an eigenvalue of the augmented eigenvalue equation (4a) if and
only if it is a root of the functior (&)

he)=QE)+(B—-—De+a+ E =0, @)

where
n

Qe) =) ——. a=(OV ~API®) &V - APO). )

i
and where

a=Y " [1(OIP|®;)(D;[P|®) — (BIP|d;)(D;|V|O) — (BIV|d;)(®;|P|O)],

i

n (9a)
B=> (OP|®;)(®;|P|©).

1

(b) Lete, ¢ {A;} be an eigenvalue of the augmented eigenvalue equation (4a). This
eigenvalue is nondegenerate, and the corresponding eigenvector is

2 (D;|V — &P|©®
= 'gk_i",' Lo, + 10). (10a)

In addition,|¥,) satisfies

(®|V — SkP|\Ifk> =& — E. (11)

The above theorem produces all cardingl ¢ {1,;}) eigenvalues and eigenvectors
of the augmented eigenvalue equation (4a). The crucial funétienis expressed in
terms ofn unperturbed eigenvalues, n coefficientsc;, quantitiese and 8, and the
eigenvalueE. According to (8) and (9a) coefficients are nonnegative real numbers,
the quantityg is also a nonnegative real number, whileean assume an arbitrary real
value. In order for the matri to be positive definite, quantitg must also satisfy the
condition8 < 1 (see lemma 1). Coefficients and quantitiesx and 8 are ultimately
expressed in terms of the unperturbed eigenvalyesd in terms of the matrix elements
(®|V|®;) and(®|P|®;). Equivalently, those matrix elements can be considered as scalar
products(u|®;) = (O|V|®;) and(x|P;) = (O|P|d;).
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Using relations (A2) and (A3) in the appendix quantiieandg can be written in
a compact form:

a=(0|P(S) 'B(S) P-V(S) 'P-P(S") 'V|0),

, (9b)
p=(6|P(S") Plo)

where(S?)~1is the inverse o8’ in the spaceX’. SinceS’ is positive definite this inverse
exists, and from (A2) one find$§’) ! = Do 1P (D

Formulas (9b) express quantitiesand 8 in the way that is explicitly indepen-
dent on the unperturbed eigenvectdds). This is advantageous for some theoretical
considerations. Representation (9a) is more convenient for numerical applications.

The case of singular eigenvalues and corresponding eigenvectors is treated in the
following theorem.

Theorem |l (Singular eigenvalues and eigenvectors). Assume the same conditions as in
theorem I. Letr; ben-degenerate unperturbed eigenvalue, angiet) (v =1,...,n)
be the corresponding eigenvectors. Then

(a) If the unperturbed eigenvalug is active and degeneratg > 1), theng, = 4 ;
is a(n — 1)-degenerate eigenvalue of the augmented system. The correspondirig
eigenvectors are linear combinations of the unperturbed eigenvedtgns

n
W) =" D,|®,) (122)

where the coefficient®, satisfy

n
> (OIV — &P|®;,)D, = 0. (12b)
If the unperturbed eigenvalug; is not degenerate; = 1), the values;, = A; is
not an eigenvalue of the augmented system.
(b) If the unperturbed eigenvalug is passive, thea, = A; is an eigenvalue of
the augmented system with the following two possibilities:

(b1) If h(er) # 0O, this eigenvalue ig-degenerate, and the correspondingigen-
vectors can be chosen to coincide withunperturbed eigenvector$;,).

(b2) If h(ey) = 0, this eigenvalue i&)+1)-degenerate. Firgteigenvectors corre-
sponding to this eigenvalue are given by (13), while an additional eigenvector
is

. (@V — &P|©)
W)= > @) + 1©) (10b)
iOaery) kTN
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wherei (A; # g;) denotes the summation over akuch thath; # . This
eigenvector satisfies relation (11) with= ;.

In the expression (10b) of the above theorem summation excludes all terms with
A = &. Sinceg, = A; is passive, all such terms are formally of the typ8.0f we make
the convention to neglect those terms, then relation (10b) becomes a special case of the
relation (10a). In addition, conditiol(e;) = O is relation (7) withe = A;. This shows
that each root of the functiain(¢) is an eigenvalue of the augmented eigenvalue equation,
either cardinal or singular. If the unperturbed eigenvalués active, the functiork(¢)
has singularity in the poirt = A ;, and hence it can have no root in this point. However,
if the unperturbed eigenvalug is passive, this function is finite and analytic in the point
e = A;. Inthis case, it is possible fdr(¢) to have a root, = A; € {A;}. This root is
also an eigenvalue of the augmented eigenvalue equation. In conclusion, the set of all
roots to the functiork(¢) contains all cardinal eigenvalues of the augmented eigenvalue
equation. In addition, it may also contain some singular eigenvalues of this equation.

The above two theorems provide complete solution to the matrix augmentation
problem. In order to find eigenvalues and eigenvectors of the augmented eigenvalue
equation, one has first to find roots/ofs). Once a particular roat = ¢, is obtained,
this root is an augmented eigenvalue, and the corresponding eigenvector is given by rela-
tion (10a). This produces all cardinal and possibly some singular eigenvalues and eigen-
vectors. The remaining singular eigenvalues and eigenvectors are trivial to find. Each
n-degeneratdn > 1) unperturbed eigenvaluk; that is active generates &p — 1)-
degenerate perturbed eigenvakje= A;. The corresponding eigenvectors are given
by relation (12a), where the coefficienty, satisfy (12b). Eachj-degenerate unper-
turbed eigenvalug ; that is passive generates eitheror (n + 1)-degenerate perturbed
eigenvalues, = A;. Firsty eigenvectors coincide with theunperturbed eigenvectors
(equation (13)). The one extra eigenvector, which exists oyiif) = 0, is already ob-
tained during the search for the rootsigt) and the corresponding eigenvectors. This
completes derivation of augmented eigenvalues and eigenvectors by the LRP method.
In addition it shows that the augmentation of the original eigenvalue equation by a sin-
gle row and a single column can change (decrease or increase) the degeneracy of each
particular unperturbed eigenvaldie at most by one.

Above theorems apply to generalised eigenvalue equations (1a) and (4a)Sthere
is an arbitrary positive definite Hermitian operator acting in the spggavhile V is an
arbitrary Hermitian operator connecting spag&sand X¢. Similarly, P is an arbitrary
Hermitian operator connecting those two spaces that satisfies the condition of lemma 1.
All the obtained relations simplify if the corresponding equations are not completely
general. The most important special case is 0. In this casex = § = 0 and hence
h(e) = Q(e) + E —e. ConditionP = 0 is relatively mild and it allows for the unper-
turbed eigenvalue equation (1a) to be still of a most general type. There are no restric-
tions on the interactio that connects space§ and X4, and the eigenvalue equation
describing the combined system is still a generalised eigenvalue equation, though not of
a most general type. One h|@s= 0 in a special but highly important case when instead
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of generalised eigenvalue equations (1a) and (4a) one has standard eigenvalue equations
B|®;) = ;| ;) andH | W) = g, | ¥, ), respectively.

3. Orthonormalization of perturbed eigenvectors

Perturbed eigenvectors (10) and (12) are not orthonormalized. All perturbed eigen-
vectors can be orthonormalized according to (4c). This can be done using relation (1b)
and the propertp|®) € X’.

Concerning normalisation, one finds that each cardinal eigenvector should be nor-
malised according to

1

v 14a
where|¥,) is given by (10a) and where (see appendix)
— [(@i]V = 2,P|©)?
= 1-8. 14b
M=) e T (140)

In a similar way are normalised singular eigenvectors (10b). Singular eigenvec-
tors (12a) are normalised according to

|v) (14c)

1 )7
=——— % D,|D,;,).
\Y Zu D:?DV ; ' .

In particular, each singular eigenvector of type (13) is already properly normalised.
Concerning mutual orthogonality of perturbed eigenvectors, eigenvedtgrand
|\¥;) that correspond to distinct eigenvalueg & ¢;) are already orthogonal to each
other. This is a consequence of the hermiticity of operadtbendsS, and the fact thab
is positive definite. Since each cardinal eigenvector is nondegenerate, it is orthogonal to
all other eigenvectors. In particular, |#,) and|¥,) are distinct cardinal eigenvectors,
they satisfy(W, |S|¥;) = 0. If those eigenvectors are normalised one finds

1 i (OIV — A;P|®;)|?
VWi W, (ex — A (e — Ay)

whereW, andW, are given by (14b).

Similar relation is obtained if¥;) is a normalised cardinal eigenvector an¢\drf)
is a normalised singular eigenvector of type (10b), or if both eigenvectors are normalised
singular eigenvectors of type (10b). Another possible combination ig¥hatis a nor-
malised cardinal eigenvector whil&,) is a normalised singular eigenvector (14c). In
this case one obtains

(We|SI¥) =

+1—ﬁ}=0 (15a)

i

1 S DX D, |V — £P|O)

VWi, DiD, &k — &

(W |S|Wy) = =0. (15b)
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This relation is equivalent to the condition (12b) imposed on the coefficients
that determine singular eigenvectdr;).

One can write right hand sides of relations (15) in a simpler form, without nor-
malisation constants. However, written in the above form those relations can be directly
used as a test for the numerical accuracy of the suggested method [6]. In any numerical
calculation due to the finite precision arithmetic there is always some error accumu-
lation. Therefore, calculated eigenvectdds’) slightly differ from exact eigenvectors
W) If [&)) and|W)") are calculated eigenvectors that correspond to different eigenval-
ues, they will be only approximately orthogonal to each other. Numerically one obtains
(W/IS|V,") ~ 0. In order for quantitiegW,’|S|¥,") to be an objective measure of the
numerical error, vectorgl;’) and|¥;") should be normalised.

Since eigenvectors that correspond to distinct eigenvalues are automatically orthog-
onal to each other, relations (14) are sufficient to orthonormalize all cardinal eigenvec-
tors and, in addition, all nondegenerate singular eigenvectors. If there is any degenerate
singular eigenvalue, = 1 ;, corresponding eigenvectors can be orthonormalized using
some standard orthonormalization procedures such as Gramm-Schmidt orthonormaliza-
tion [1,2] and relations (1b) and (12). This extra orthonormalization should be numeri-
cally simple and easy to perform, since the dimension of the corresponding degenerate
subspace is in most cases much smaller than the dimension of the combined space

4. Global distribution of perturbed eigenvalues

All cardinal eigenvalues of the augmented eigenvalue equation are roots of the
function h(¢). In order to find efficiently those roots, one has to investigate in more
details a global behaviour of this function. According to the expression (7), each
cardinal eigenvalue lies on the intersection of the functid(z) and a lineg(e) =
(1 - B)e — a — E. Conversely, each intersection Qf(¢) and g(e) is an eigenvalue
of the augmented eigenvalue equation, either cardinal or singular. Further, the function
Q(e) is continuous and analytic everywhere, except in the pairtsi; where the un-
perturbed eigenvalug; is active. If namely this eigenvalue is active, there is at least
one unperturbed eigenvectpb;,) such that(®|V — A;P|®;,) # 0. Hencec; # O,
and the functiorf2 (¢) has a singularity in the point = A;. Since each coefficient
is nonnegative, it follows that if the unperturbed eigenvalués active, functions2 (¢)
andh(¢e) satisfy

lim h(e) = Iim+ Q(g) = o0, lim h(e) = lim Q) = —o0 (16a)

+ _ _
e A] e A] e A] e A]

wheree — Aj ande — A denotes right and left limits, respectively. If the unperturbed
eigenvaluel ; is passive, functions2(e) andz(e) are finite and analytic in the point
& = )\.j.
One also finds
lim Q) =0. (16b)

g—>+00
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Sincec; > 0 the derivative of a functio® (¢) is negative, i.e., @(¢)/de < 0. In
addition, one finds (see appendix):

Lemma 1. Matrix S= 14 + S’ + P is positive definite if and only i = (©|P(S")~!
P|®) satisfies8 < 1, i.e.,

B=> (OP|®;)(®;|P|O) < 1. (17)

1

According to this lemma, the slope-18 of a line g(¢) must be positive. Since the
derivative of the functiorf2 (¢) is negative, relations (16) and (17) imply

Lemma 2. (a) The functiom:(e) has negative derivative

dh
© o (18a)
de
on the entire real axis, except in those points: A ; where the unperturbed eigenvalue
A; is active.
(b) In the limite — +o00 one has
_da(e)
81@00 s B—1<0. (18b)

The functioni(¢) is thus monotonically decreasing function on the entire real axis,
except in those points = A; where the unperturbed eigenvalig is active. In such
points the functiom:(e) diverges. Hence and from (7) it follows that if the adjacent
unperturbed eigenvaluegs, and A, are active, and if these eigenvalues differ from
each other, then there is exactly one reptof i(e) in the open intervali,, A,y1).

This root is a cardinal eigenvalue of the augmented eigenvalue equation, and there is
no other eigenvalue of this equation in the intergal, A,.1). According to (18b), the
same applies to the intervals-co, A1) and (2, o0), provided the extreme unperturbed
eigenvalues.; anda, are active.

More generally, ifx; andi, (A, < 1,) are active eigenvalues of the unperturbed
system which are not necessarily adjacent, and if all the intervening eigenvalues
(As, A,) are passive, then there is exactly one roet ¢, of i(e) in the open interval
(A, Ap). This root is an eigenvalue of the augmented eigenvalue equation (4a), and this
eigenvalue can be either cardinal or singular. It is singular if it coincides with some
passive unperturbed eigenvaluge (i, A,), otherwise it is cardinal.

This implies that if all the unperturbed eigenvaluges(i = 1, ..., n) are nonde-
generate and active, they are interlaced with the perturbed eigen¥alaesording to

E1 <A <8 <A<+ <& <Ay < Enpl. (29)

Relation (19) describes global distribution of the perturbed eigenvalues in the spe-
cial but important case when all eigenvalue®f the unperturbed system are nondegen-
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erate and active. Those conditions can be relaxed. If the eigenvalue equation (1a) has
some degenerate and/or passive eigenvalydhere is always an infinitesimal variation

of the matrix elements of a matrB such that the resulting eigenvalue equation has all
eigenvalues nondegenerate and active. Eigenvalues of this slightly perturbed eigenvalue
equation and the eigenvalues of the corresponding augmented eigenvalue equation sat-
isfy interlacing condition (19). However, each eigenvalue of the eigenvalue equation (1a)
is a continuous function of the matrix elements of the ma#ibEach eigenvalue of the
augmented eigenvalue equation (4a) is also a continuous function of the matrix elements
of the matrixB. Hence we have the following

Interlacing rule. Let the initial eigenvalueg; and the augmented eigenvalugsbe
arranged in the nondecreasing order. Then:

(a) Eigenvalues, of the augmented system are interlaced with the eigenvalues
of the initial system according to

1S A <A< - <& <Ay < &1 (20a)

(b) If the adjacent unperturbed eigenvalaesnda; 1 are distinct and active, then
in the relation (20a) a strict inequality applies

Ai < &i41 < Ajq1. (20Db)

Concerning point (b) of the above rule, there are additional possibilities that either
one or both of the adjacent unperturbed eigenvalyesda; 1 (A; # A;41) IS passive.

If this is the case, perturbed eigenvakjge; may coincide with the passive unperturbed
eigenvalue. In order to investigate this case in more details, one has to calculate the
function k(e) in the point of the passive unperturbed eigenvalue or eigenvalues. For
example, ifA; and};,, are adjacent and distinct unperturbed eigenvalues, akdisf
passive whilex,, ; is active, one has to calculak&r;). If 2(X;) > 0, and sincéi(e) is
monotonically decreasing in the intenjal, A;,1), there is a root of (¢) in this interval,

and hence,; < ¢;11 < A;41. Augmented eigenvalue ., is thus cardinal. If however

h(A;) < 0, there is no cardinal eigenvalue in this interval. Hence and due to (20a) one
hasi; = €41 < A;y1 ande; g is singular. In a similar way one can analyse other
possibilities.

In many cases extreme eigenvalugsande, , are of special interest. Consider
for example the smallest perturbed eigenvalye According to the above analyse one
hase; < Aq, unless the unperturbed eigenvalugis passive and unless in addition
h(r1) = 0. Thus the augmented eigenvalue equation will decrease the lowest eigen-
valuei; whenever this eigenvalue is active. If however this eigenvalue is passive, it will
be decreased by the perturbation if and only(if,) < O.

Note finally that interlacing rule depends on the condition (17) that guarantees
matrix S to be positive definite. If this condition is not satisfied, ma8iis not positive
definite, and some of the perturbed eigenvalues may be complex. There is even the
possibility for the perturbed system to have less thes (L) eigenvalues, in which case
this system is defective.
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5. Numerical considerations

Numerically the above suggested method has two important features, relatively
small storage requirement, and relatively small operation count.

Consider first storage requirement. In a standard approach in order to solve gener-
alised eigenvalue equation (4a) one has to store in a computer memory matrix elements
H;; andS;; of matricesH andS. If those matrices are real symmetric, and if the sym-
metry H;; = H;; andS;; = §j; is fully exploited, this requires the storage of approxi-
matelyn? matrix elements. If those matrices are Hermitian but not real, storage doubles
and equals approximately:2 Additional storage is needed in order to perform diago-
nalization and to keep various intermediate results. In all those cases standard storage
requirement is of the orde® (n?). In the LRP approach in order to find the eigenvalues
of the augmented eigenvalue equation (4a) one has to find roots of the fuh¢tipn
This function is fully defined by unperturbed eigenvalues, » real coefficients;, and
three additional quantities, 8 and E. Minimum additional storage is needed in order
to obtain roots ofi(¢). The entire storage requirement is hence approximaieiytich
is of the orderO(n). This storage is an order of magnitude smaller than the storage
required in a standard approach.

If besides the eigenvalues the corresponding eigenvectors are also needed, the LRP
storage is slightly enhanced, but it is still of the ordk). In conclusion, whether only
eigenvalues or also eigenvectors are required, in both cases LRP storage requirement is
of the orderO(n). This is substantial saving in storage, especially for larg€onse-
guently, with the LRP approach one can easily treat matrix augmentation problem for
matrices of the order of few millions on a standard PC computer.

Consider now operation count. This quantity is usually expressed in terms of the
number of flops needed to perform a particular algorithm. A flop roughly constitutes the
effort of doing a floating point add, a floating point multiply, and a little subscribing [1].
Thus, the number of flops approximately equals the number of multiplicative operations
(x, +). Therefore, one can estimate operation count by estimating the number of multi-
plicative operations.

In the LRP approach all cardinal eigenvalues, and in addition some singular eigen-
values of the perturbed eigenvalue equation are roots of the furiction Hence, the
main numerical load involves the search of those roots. For the sake of simplicity, we
will consider real matrix augmentation problem where matrices involved are real sym-
metric. Generalisation to arbitrary Hermitian matrices is straightforward.

In order to initiate calculation of the roots @f(¢), one has first to calculate
2n matrix elementg®|V|®;) and (®|P|®;). In the basg{|r)} one has(®|V|d;) =
> (®IV|r)(r|®;) and(O|P|®;) = ) (®|P|r)(r|®;). In a most general case involving
real matrices, calculation of these matrix elements requirésiiltiplications. How-
ever, in many cases this operation count is much smaller. For example, most of the matrix
elementg®|V|r) and(®|P|r) may be zero. If1 is large this is usually the case, since in
the majority of standard problems vect®) that describes systef usually interacts
only with relatively few base vectors) of the systemS”. Asn increases one usually
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finds that the number of nonzero matrix elemef@sV|r) and (®|P|r) is of the order
substantially lower tharO (n), in many cases of the ord€(1). This reduces above
operation count t@ (n). In some other cases matrix eleme(@V|®;) and (©|P|®d;)
may be given in a closed analytical form, which eliminates the corresponding operation
count. Once these matrix elements are known, next step is to construct the function
h(e). This requires calculation of coefficientsc; and calculation of the quantities
and 8. Calculation of coefficients; requires 2 multiplications, while calculation of
guantitiese andg requires approximatelys3multiplications. Hence the construction of
the functionk(¢) requires approximatelysbmultiplications, which is of the orde® (n).
In conclusion, this preparatory phase, which is needed in order to obtain the function
h(e), requires at mosP (n?) operations (22 + 52 multiplications), but it can be as low
asO(n) operations (b multiplications). This estimate applies to a most general matrix
augmentation problem involving real symmetric matrices. In the important special case
P = 0 one hag®|P|®;) = 0 anda = B = 0. Operation count accordingly decreases
to at most 42 + n) multiplications, or to as few as only multiplications. Operation
count equalsi? + n) if one has to calculate matrix elemen®|V|®;) and if in addi-
tion almost all matrix element®|V|r) are nonzero. Operation count equal matrix
elementg®|V|®;) area priori known, and it is of the orde® (n) (but higher tham) if
the number of nonzero matrix elemer&|V|r) is of the orderO (1).

Once the functiori(e) is constructed, next step is to find root or roetsof this
function. Most root finding methods start with some initial approximate gﬁ)b,twhich
is then iteratively improved. This iteration requires on avertigecalculations of the
function(¢) and (depending on the method) its derivative for various values Bach
recalculation of the functioh(s) requires approximately divisions. If the derivative of
h(e) is also needed, one has to perform an additianaultiplications. Hence this last
step requires, depending on the method, eithet or 2- It - » multiplicative operations
per root. This isO(n) operations per root, oP (n?) operations if all roots ofi(¢) are
required. Once a particular root is obtained, the corresponding eigenvector (10a) can
be easily derived with essentially divisions. Concerning normalisation, the quantity
W given by (14b) can be calculated withadditional multiplicative operations. Total
operation count to find all eigenvalues and all normalized eigenvectors is hence of the
order O (n?). This compares very favourable with the operation count of various direct
matrix diagonalization methods, such as Jacobi, Givens and Householder, which require
O (n®) operations in order to obtain all eigenvalues and/or eigenvectors [1,2]. In addition,
if a single eigenvalue and/or eigenvector is required, and if matrix elenjémts ;)
and (®|P|®;) are known, or if the number of nonzero matrix elemeftgV|r) and
(®|P]r) is of the orderO (1), this can be done with as few @5n) operations.

6. Numerical results

In order to verify the LRP matrix augmentation method and to estimate its per-
formance, a computer program was written by the author. The program was written in
C++, and the calculation was done on a 1.5 GHz Pentium 4 PC computer. In a calcu-
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lation double precision floating point numbers that require eight bytes per number and
that are accurate to approximately 15 significant digits were used. Instead of arbitrary
Hermitian matrices, real Hermitian matrices were considered. Those matrices are sym-
metric. There are essentially no new features if instead of real Hermitian more general
complex Hermitian matrices are treated. The restriction to real matrices is of no conse-
guence as far as the numerical verification of the suggested method is concerned.

Concerning verification of the LRP method, LRP results were directly compared
with the results obtained by the standard diagonalization method. This was done only
for relatively small matricesn( < 1000). Due to the excessive storage requirement, it
was not possible to perform a standard diagonalization on a PC computer in the case
of large matrices. Actual calculation was simulated with random matrices. Matrix
was constructed as real symmetric matrix with matrix elements chosen as uniform ran-
dom numbers in some predefined interval. In a similar way was constructed ®atrix
In order for this matrix to be positive definite, diagonal element§&ofvere chosen
as relatively large random positive numbers, while off-diagonal elements were chosen
as relatively small random numbers. With such a choice resulting matrix is diagonally
dominant, and if the intervals for random diagonal and of-diagonal matrix elements are
selected in an appropriate way, it is positive definite. After matrBemnd S” were
constructed, generalised eigenvalue equation (1) was solved in a standard way using the
combination of the Cholesky decomposition and the symmetric QR algorithm [1]. This
was done in two steps. In the first step maBfxwas decomposed by Cholesky decom-
position according t& = G - G’ whereG is a lower triangular matrix and whe@’
is transpose of [1]. In this way, generalised eigenvalue equation (1a) was transformed
into a simple eigenvalue equati@i¢;) = A;|¢;) whereC = G1B(G")~! and where
|¢;) = GT|®;). In the second step, the obtained eigenvalue equation was solved using
symmetric QR algorithm. This algorithm involves initial Householder tridiagonaliza-
tion followed by the QR algorithm proper [1]. This standard approach that combines
Cholesky decomposition with the symmetric QR algorithm is one of the best methods
to solve generalised symmetric eigenvalue equation. It requires abéutops [1].
Once the unperturbed eigenvectods;) are obtained, they were orthonormalized ac-
cording to the relation (1b). Concerning augmented eigenvalue equation, matrix ele-
ments(®|V|r) and(®|P|r) were also constructed as uniform random numbers in some
predefined interval. In order for the matr&to be positive definite, matrix elements
(®|P|®;) should satisfy the condition (17) of lemma 1. In the b@ig¢} this condi-
tion I‘eadszrp(®|P|r)(rl(Sb)_l|p)(p|P|®) < 1. Accordingly, random matrix elements
(®|P|r) were rescaled in order to satisfy this condition. Eigenvadlweas also treated as
random quantity. Once the augmented eigenvalue equation was constructed in this way,
it was solved by the LRP approach and by a standard diagonalization method. In this
way, one could verify LRP eigenvalues and eigenvectors by a direct comparison with
eigenvalues and eigenvectors obtained in a standard way. This comparison did show that
the LRP matrix augmentation method is numerically accurate and reliable.

In order to estimate the performance of the LRP approach, the unperturbed sys-
tem was simulated in the way that is more appropriate for this method. Unperturbed
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eigenvalues.; were chosen as random numbers in some predefined interval. In a simi-
lar way was chosen eigenvaldg Matrix elementg®|V|®;) and(©|P|®;) were also
simulated as random numbers, and those later matrix elements were subject to the con-
dition (17) of lemma 1. Next a LRP calculation was performed. This calculation was
repeated for various matrices of the order= 10? up to includingn = 5- 1C°. In

order to cover this entire range, five different sets of such calculations were done. In
the first set matrices of order = 10?(10%)9 - 10 were considered, in the second
set matrices of ordet = 10%(10%)9 - 10° were considered, in the third set matrices

of ordern = 10*(10")9- 10* were considered, in the forth set matrices of the order

n = 10°(10°)9 - 10° were considered, while in the fifth set huge matrices of the order
n = 10°(1°)5 - 10° were considered. The entire calculation was repeated few times
with various choices for predefined intervals for random quantitie$®|V|®;) and
(®|P|®;). In this way, one could simulate the case of the weak as well as strong and
very strong interactions. This was done covering few orders of magnitude, starting with
the weak interaction (relatively small quantitié®|V|®;)) to very strong interaction
(relatively large quantities® |V |®;)).

According to the above discussion, LRP operation count per eigenvalue and per
eigenvector should be proportional to the dimensionf the generalised eigenvalue
equation. However, the corresponding times are only approximately proportional to the
operation count. Depending on the matrix dimension and internal computer architec-
ture, some operations are done faster using computer cache, while some require access
to the computer RAM that is slower. Hence average time needed to perform a single
flop depends on the relative speed of cache and RAM memory access, on the amount of
memory that can be stored in the computer cache, on the cache status, and on the dimen-
sionn of matrices involved. In addition, in the case of cardinal eigenvalues, operation
count depends on the number of iterations that are required to obtain the correspond-
ing root of the functionk(e). This number varies from eigenvalue to eigenvalue, and
for each particular eigenvalug, it strongly depends on the choice of the initial ap-
proximate eigenvalue,(( ). According to the interlacing rule each cardinal eigenvajue
(2 < k < n) satisfiesh,_1 < g < At. In the present computer program, this initial
approximation was chosen a,fg) = (Ar_1+ Ar)/2. This is a very crude approximation,
and much better choices, based on some approximate estimation of the perturbed eigen-
value are possible. Nevertheless, this choice is relatively unbiased, and it is good enough
for the assessment of the LRP performance. In view of all above factors obtained times
per eigenvalue and per eigenvector can be only approximately proportional to the matrix
dimension.

Typical results of the LRP method are shown in tables 1 and 2. In table 1 are given
times required to calculate a single eigenvadyewhile in table 2 are given times re-
quired to calculate a single normalised eigenvetiq!, once the corresponding eigen-
value g, is known. In the case of large matrices, calculation of all eigenvalues and/or
eigenvectors was quite time consuming, and therefore in this case only a relatively small
number of randomly selected eigenvalues and eigenvectors were calculated. This is in-
dicated with an asterisk (*) in those tables.
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Table 1
Times (in seconds) needed to calculate a single augmented eigenvalue by the
LRP method.

n 102 103 104 1P 108
l-n 0.000035 000036 00036 0035 0.33"
2-n 0.000072 000075 00072 0070 0.62"
3.n 0.00011 00011 0010 Q10" 0.95"
4.n 0.00015 00014 0014 Q13 1.32
5-n 0.00018 00018 0018 017 1.68"
6-n 0.00022 00022 0021 0.21"

7-n 0.00026 00026 0025 0.24"
8.n 0.00030 00029 0028 0.28"
9.n 0.00033 00032 0031 0.31"

* Times based on the calculation of randomly selected eigenvalues.

Table 2
Times (in seconds) needed to calculate a single augmented eigenvector by the
LRP method.

n 102 103 104 10° 108
1-n 0.0000062 (000064 000067 00070 0.071"
2.n 0.000013 000013 00014 0014 0.14"
3.n 0.000019 000019 00021 0021 0.21"
4.n 0.000025 000026 00028 0029 0.29"
5.n 0.000032 000033 00035 0.035 0.36"
6-n 0.000039 000040 00042 0.043
7-n 0.000044 000046 00049 0.050
8.n 0.000051 000053 00056 0.057"

9.n 0.000057 000060 00063 0.065

* Times based on the calculation of randomly selected eigenvectors.

Times reported in table 1 are obtained under the assumption that quantities
(®|V|®P;) and (®|P|®;) are known. This assumption is in the spirit with the LRP ap-
proach, and it is justified in many cases, especiallyisflarge. If those quantities are not
known, and if in addition almost all matrix elementd|V|r) and (®|P|r) are nonzero,
there is an overall overhead of approximatehf 2nultiplications required to calculate
these quantities. This is an extreme case, and all intermediate cases are possible. Usu-
ally vector |®) interacts only withO (1) base vectorsr) of the systemS?, and this
overhead reduces 0 (n). In the extreme case of th@(n?) overhead, times in table 1
should be interpreted as approximate times per eigenvalue, rather than individual times
required to obtain selected eigenvalue. If all eigenvalues are calculated, main numerical
load is due to multiple iterative recalculations of the functiq@a), and the per eigen-
value overhead due to the calculation of quantit®$V |®;) and(®|P|®;) is relatively
small.
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Furthermore, times reported in tables 1 and 2 are average times taken over many
choices of random matrices. For all previous reasons, those times are subject to relatively
large fluctuations. Those fluctuations are particularly large in the case of the eigenvalues
(table 1) since for each the average number of iterations per eigenvalue and hence
the operation count depends on the selected random matrix. However, in the case of
the corresponding eigenvectors (table 2) operation count depends only on the matrix
dimensionn, and not on the particular choice of this matrix. Fluctuations are hence
smaller and they are mainly due to variations in the use of computer cache.

Times required to calculate a particular eigenvalue are in general slightly better
than linear (table 1). This indicates that on average large matrices require slightly smaller
number of iterations per eigenvalue. This result of course depends on the particular
choice of the initial approximatioa,ﬁo) and it may vary with this choice. Nevertheless,
the deviation from linearity in table 1 is very mild over many orders of magnitude, and
this strongly suggests that the average operation count per eigenvalue is indeed propor-
tional ton. In addition, one can devise an algorithm that significantly improves con-
vergence and stability of the iterative calculation of the eigenvalues [6]. Thus, times
reported in table 1 can be substantially reduced. Simultaneously fluctuations of the op-
eration counts per eigenvalue are also reduced. The details of this improved algorithm
for the calculation of the augmented eigenvalues will be given elsewhere [6].

Once the particular eigenvalug is known, operation count to obtain the corre-
sponding eigenvector is to the very good approximation proportional tAs shown
in table 2, average time per eigenvector is slightly worst than linear. This result can be
attributed to the relatively better use of computer cache in the case of small matrices. If
the matrix is sufficiently small, it is possible for all input data to fit into computer cache,
while if the matrix is large this is not possible. Hence, on average, time required to per-
form a single flop is smaller in the case of a small matrix, and it should slowly increase
with the increase of. The deviation from linearity in table 2 is however very mild over
many orders of magnitude, and hence one can conclude that the LRP operation count
per eigenvector is to a very good approximation proportional to

As an example, consider the case= 1000. In this case, LRP algorithm requires
about 0.42 seconds in order to obtain all eigenvalues and eigenvectors of the augmented
eigenvalue equation. Standard method that combines the Cholesky decompaosition with
the symmetric QR algorithm [1] requires about 120 seconds in order to solve the same
problem. The case = 1000 was the largest case to be solved by this standard method.
If all solutions are required, relative advantage of the LRP approach increases linearly
with the increase of. Thus already in the case= 10* LRP approach requires about
43 seconds in order to find all augmented solutions, while the above standard algorithm
would require, provided it could be done on a PC computer, more than 33 hours. Rela-
tive advantage of the LRP approach is even more pronounced if only a single eigenvalue
and/or eigenvector is required. If matrix elemef@V|®;) and (®|P|®;) that define
augmented interaction are given by the conditions of the matrix augmentation problem,
and ifn = 10%, one needs only about 0.0043 seconds in order to obtain any particu-
lar augmented eigenvalue and the corresponding eigenvector. If matrices are as large
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asn = 10°, this time increases to only about 0.4 seconds. Even when matrix elements
(®|V|P;) and(B|P|®;) are not known, operation count to obtain any particular eigen-
value and/or eigenvector is still very small and of the or@én), provided vectol®)
interacts only with relatively few base vectdrs of the systens?.

7. Conclusions

Augmentation of the generalised n eigenvalue equatioB|®;) = A,;S"|®;) (i =
1,...,n) byasingle row and a single column to the generaligefl) (n+1) eigenvalue
equationH|W¥,) = S|¥;) (k = 1,...,n + 1) is considered. Following ideas of the
LRP approach [5], the solution of the augmented eigenvalue equation is expressed in a
closed form in terms of the eigenvalugsand orthonormalized eigenvectds;) of the
original eigenvalue equation.

It is found that the operation count to obtain all augmented eigenvalues and all
augmented eigenvectors by this method is of the or@ler?). Other presently known
methods usually requir® (n®) operations in order to obtain all augmented eigenvalues
and eigenvectors. Even in the case when only a single eigenvalue and/or eigenvector
is required, operation count of those other methods is still higher éha3). Unless
matrices involved are of some special kind, such as sparse matrices, or unless the per-
turbation is small, operation count to find an arbitrary eigenvalue and/or eigenvector
is again of the ordeO (n®). The problem is substantially more complex in the case
of the generalised eigenvalue equation. However, LRP method in many cases requires
only O (n) operations in order to find any particular eigenvalue and/or eigenvector of the
generalised eigenvalue equation. This operation count is as l@nasif matrix ele-
ments(®|V|®;) and(®|P|®;) are known, or if the number of nonzero matrix elements
(®|V|ry and (®|P|r) is of the orderO(1). First assumption applies to some problems
involving huge matrices, when matrix elemef@&|V|®;) and(®|P|®;) are given in an
analytic closed form. Second assumption applies to the case when systd#scribed
by the vector|®) interacts only with relatively few base vectdrs of the systemS”.

This is usually the case in most practical problems. In conclusion, if all eigenvalues
and/or eigenvectors are required, LRP solution to the matrix augmentation problem is
usually one order of magnitude faster than other presently known methods. If only a sin-
gle eigenvalue and/or eigenvector is required, in many cases of interest, LRP approach
is two orders of magnitude faster than other methods.

The storage requirement of the LRP approach is also favourable. Direct diagonal-
ization methods usually require the storage of matrix elements of all matrices involved.
This is of the orderO (n?). However, the storage requirement of the LRP approach is
of the orderO(n). Hence, one can treat by these method very large matrices. In the
present manuscript, matrices as large ad® x 5- 10° were considered on a standard
PC computer.

Matrix augmentation problem naturally arises whenever one knows a solution to
an eigenvalue equation and one wants to improve this solution by the extension of the
initial vector space with some additional vectors. Many practical problems are of this
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kind. For example, one may know the solution of some MO calculation in a selected
base set of atomic orbitals. This solution can be always improved with the inclusion
of additional atomic orbitals in the original basic set. Relative importance of candidate
orbitals and their influence on the resulting eigenvalues and eigenvectors can be very
efficiently analysed by the suggested LRP method.

Appendix
A.1. Proof of theorems | and I

If S is Hermitian and positive definite iK?, (S?)~1/?is also Hermitian and posi-

n?

tive definite. Eigenvalue equation (1a) is hence equivalent to

Bolgi) = Ail¢i) (A1)
where

Bo= () B() ™% Ign) = ()@, (A1)

Hermiticity of B and S’ implies hermiticity ofB,, and the eigenvalues; of the
unperturbed equation (1a) are hence real. Further, eigenvegidprsf By can be or-
thonormalized according t@;|¢;) = &;;, which implies (1b). The sef®;)} is hence
complete. Similar conclusion applies to the perturbed eigenvalue equation (4a).

Define operator

1= 10)(®i]S" (A2)

Using (1b) one find$?|®;) = |®;) for each eigenvectof®;) of the eigenvalue
equation (1a). Since these eigenvectors form a complete $&% iaperaton? is a unit
operator in this space. Hence

I =1"+0)(O| (A2)

is a unit operator in the augmented spaGe ;. In a similar way, one obtains identity
B=) S®)x (S (A3)
We now derive theorems | and Il following general ideas of the LRP approach [5].
Relations (4) and (3) imply
[B+ (V — &P)[O)(O] + |©)(O(V — &P) + (E — £)|0)(O]]| W) = &S’ |Wy).

Multiplying this expression from left by®; |, and using (1a) and the orthogonality
(®;|®) = 0, one finds

(ex — A)(@; [S'| W) = (@i |V — & PIO)(OYy), i=1,...,n. (A4)



T.P. ZivkovE' / Augmentation of the generalisedk n eigenvalue 369

Multiplying the same expression witl®| and using propertieg|B = (0|S’ =0
and(®|V|®) = (0|P|®) = 0 one obtains

(OIV — &PIWy) + (E — &) (OW) = 0. (A5)

Relations (A4) and (A5) are our starting relations for the derivation of theorems |
and Il.

Cardinal eigenvaluesef ¢ {);})

Lete; ¢ {);} be an eigenvalue of the perturbed eigenvalue equation (4a). Divide
(A4) by (g, — 1) i = 1, ..., n), multiply the obtained relation byp;) and sum over
to obtain:

i (@i|V — &Pl|O)

D;).
— |®;)

D 1)@ S| W) = (O] W)

Adding to both sides of this relatig®)(®|¥,) and using (A2) one finds:

(D, |V — g PO
I‘Ifk>=<®|\1fk>z< lek_gfl >|d>i>+<®lllfk>|®>- (A6)

1

Since|¥,) is nontrivial, one must havé®|¥,) # 0. Without loss of generality
one can choos& |, ) = 1. With this choice (A6) reduces to (10a) while (A5) reduces
to (11).

Next one has to determine the perturbed eigenvgludultiplying (10a) from left
by (®|(V — &.P) one obtains

(OIV — &P|W;) = Qoler), (A7)
where
2 (B|V — eP|®;)(P;|V — P|O)
Q(e) =) p— ot (A8)
Relation (A5) and conditiof®|¥) = 1 imply
Qo(sk) =& — E. (Ag)

Eigenvalueg, is hence a root of (A9). In order to facilitate numerical evaluation
of the function2q(e) for multiple values of, it is convenient to eliminate dependence
on ¢ from the numerator of a sum in (A8). Using the identity

(a — eb)(a* — eb*) = (a — Ab)(a* — Ab*) + (A — &)[(a — Ab)b* + (a* — Ab*)D]
+ (A — £)°bb*
one finds
Qole) = QL) + o + B, (A10)
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where the functiorf2 (¢) is given by (8) while the quantitieg andg are given by (9a).
Relation (A9) is hence equivalent to

Q) =1-Pley —E -«

which is condition (7).

This proves that a necessary condition f§pr¢ {A;} to be an eigenvalue of the
perturbed eigenvalue equation (4a) is that it should satiéfy) = 0 and that the cor-
responding eigenvector is given by (10a). The inverse is also trug.4f{);} satisfies
h(er) = 0, then according to the above derivation it is an eigenvalue of the augmented
equation (4a), and (10a) is the corresponding eigenvector. This completes the proof of
theorem I.

Singular eigenvaluesf € {1;})

Let ex = A, be a singular eigenvalue of the perturbed eigenvalue equation (4a).
Let furtheri; be an-degenerate eigenvalue of the original unperturbed system, and let
|[®;,) (v=1,...,n) be the corresponding unperturbed eigenvectors. InsestirgA ;
in relation (A4) one obtains far= j

(@,|V — &PlO)O¥) =0, v=1,...,7. (A11)

Dividing (A4) by (ex — A;) (A; # &), multiplying the obtained relation byd;)
and summing over one finds:

‘ "L (D;|V — & PO OV
Z |q)i><q)i|sb|\pk): Z ( | 8£k_|)v>< | k>|q)i>-
iO#er) i er) k= 2

Adding to both sides of this relatig®) (Q[W;) + > |®;,)(®P;,|S|¥,) and using
(A2) one finds

" (®;|V — PO !
Wy = @y Y V8RO ey + Y Dds)  (AL2)

i(hiFek)

g — A

where

D, =(®,,|S1¥), v=1...,n. (A12)

Relation (A12) expresses the perturbed eigenvegdigras a linear combination of
the unperturbed eigenvectdr;) and a vectot®). Next one has to determine unknown
coefficients(®|¥;) andD,,.

Multiplying (A12) from left by (®|(V — &,P) one obtains

N
(OV — &P|W) = (BW)Qo(ex) + Y Dy(OV — & P|D},) (A13)
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where

n

(OV — g, P|D;)(D; |V — ,P|O)
Qoler) = Y o

: (A8)
i(AiFek)

Relation (A8) extends the definition of the functiaRy(e) to the pointse € {A;}.
If ¢ ¢ {A;} this function is defined according to (A8), whiledf e {A;} it is defined
according to (A8. Note that ifA ; is active expression (A8) has a pole in a pairt A ;.
The functionQo(e) is hence not continuous in this point. Howeverjif is passive,
expression (A8) is finite in the point = A; and one finds that the functido(e) is
continuous and analytic in this point.

We now distinguish two cases. The eigenvalyean be either active or passive.

Case I: the eigenvalug; is active

If the unperturbed eigenvalue; is active, there is at least one unperturbed eigen-
vector |®;,) such that(®|V — 1 ;P|®;,) # 0. Hence (All) implieg®|¥;) = 0. In-
serting into (A12) one obtainpl,) = )  D,|®,,). Further, (A5) implies(®|V —
AjPl¥) = 0 and (A13) thus reduces to (12b). This proves that if the singular eigen-
valuex; = ¢ is active, all the corresponding eigenvectors are linear combinations (12a)
of the unperturbed eigenvecto® ;,) with the coefficientsD, that satisfy (12b). The
inverse is also true. If¥) is a linear combination (12a) of the unperturbed eigenvectors
|®;,) with the coefficientsD, that satisfy (12b), it is an augmented eigenvector corre-
sponding to the eigenvalug = A ;. Thusifi; is an-degenerate unperturbed eigenvalue,
e = XAj is a(n — 1)-degenerate perturbed eigenvalue. In particular, if the unperturbed
eigenvaluel ; is nondegeneraté; = 1), &, = 1; is not the eigenvalue of the perturbed
system.

Case II: the eigenvalug; is passive

If the unperturbed eigenvalue; is passive, all quantitie@®|V — A;P|®;,) van-
ish and (A11) does not imply®|¥;) = 0. There are hence two possibilities, either
(O]Wy) =0 or(O]Y) # 0.

If (©]W¥) = 0, we obtain similar result as in the case whens active. However,
sincel ; is now passive, there is no condition (12b) on the coefficiéntsHence all the
unperturbed eigenvectof®;,) are also the perturbed eigenvectors.

If (®|W;) # 0 one can without loss of generality chogs®W¥,) = 1. In addition,
and sincel®,) are already shown to be the perturbed eigenvectors, one can in the re-
lation (A12) chooseD, = 0 (v = 1,...,n). With this choice relation (A12) reduces
to (10b), while relation (A13) reduces to

Qo(A;) = (O|V — A;P|W¥y) (A14)

which is relation (A7) withe, = A ;.
In analogy to (A10) one finds that the quantidy( ;) can be written as

Qo(A)) =QMAj) +a+A;B
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where

(O — 1P|D;)(D; [V — A, P|O)
QA =
(1)) _2: Y
i(AiF#Aj)
Since eigenvalug ; is passive the functiof (¢) is continuous and analytic in the
pointe = A;. Further, (A5) implies®|V — A;P|¥;) = A; — E which is equation (11)
with g, = A ;. Inserting into (A14) one finally obtains

Q) =A—-Brj—a—E.

This proves that in order for the vector (10b) to be an eigenvector of the perturbed
systemg; = A; should satisfyi(s;) = 0. One easily shows that the inverse is also true,
if &, = A; satisfiesh(e;) = 0, then the vector (10b) is an eigenvector corresponding to
this eigenvalue. This completes the proof of theorem II.

A.2. Proof of relations (14) and (15)

Using property (1b) one finds that each cardinal eigenvector should be normalised

according toW, “/?|W;) where|W;) is given by (10a) and where

"L (@ |V — &P|©)[2
W, =
=2 (ex — )2

+1

. i (P; |V — &P|O®)(O|P|®;) + (P;|P|O)(B|V — & P|D;)
ek — A

With some algebra this expression can be transformed into (14b). One also finds
that normalised cardinal eigenvecto¥s,) and|W¥;) should satisfy

Zn: |:(®|V — & P|®;)(D; |V — &P|O)
(ex — A (&1 — Ap)
. (OV — &P|D;)(D;|P|O)

1
U, |S|¥)) =
(Wi |SI¥;) \/W{

i

&k — A
OIP|D;){(P; |V — ¢P|©®
| (OIPI®:)] u a|q+420
& — A

This expression is equivalent to (15a). In a similar wajif is singular eigenvec-
tor (14c) with the eigenvalug, = A; and|¥;) is normalised cardinal eigenvector, one
finds

- 1 [ZU D@V = ePlO) ZD;*«D,-VIPI@)]

VWi DiD, gk — Aj

which is equivalent to (15b).
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A.3. Proof of lemma 1

If matrix S = 19 + S’ + P is positive definite thenw |S|¥) > 0 for each nontrivial
vector|¥) € X,,1. One can write vectopd) as a sum¥) = | + y,.1|©) where
|wh) e Xb and wherey,,1 = (©|¥) is the (n + 1)th component of the vectdr).
Hence

(U|SW) = (WP|S|WP) + yi 1 (OP|WP) + yuia(WP|P[®) + i, 1 yus1 > 0. (A15)

There are two possibilities, eithef,1 = 0ory,;1 # 0. If y,.1 = O relation (A15)
reduces tqW¥|S|¥) = (V?|S°|W?b) > 0. SinceS’ is by assumption positive definite in
X", this relation is true for each nontrivig®) € X°. If y,,1 # 0, one can normalise
vector|W¥) in such a way thag,.; = 1. Hence

(V|S|w) = (W*|S"|w’) + (0|P|¥’) + (¥*|P|®) + 1 > 0. (A15)

This expression is a function ¢&*) € X, and it has a minimum for some vector
|we). The variation of the right hand side of (A}Should vanish forw?) = |¥d), i.e.,
S(WEISP W) + 8(OIP|WS) + §(WIP|®) = 0. From this condition one findsky) =
—(8)~P|®) and hence(W + O|S|WE + ©) = 1 — (B|P(S)~IP|®). Thus if the
matrix S is positive definite, one must hay®|P(S")~'P|®) < 1. The inverse is also
true. Assume that®|P(S")~P|®) < 1 and let vectoitW) satisfyy,.1 = 1. One can
write this vector as a linear combinatiow) = c|\IJg) + [§W) + |®) wherec is some
constant, and where the variatight) is contained in the spacé” and it is orthogonal
to the vector W) ((§W|S|W) = 0, [§¥) € X?). This implies

(W[SIW) = 1+ [Ic]? = (c + ¢*)](©|P(S) 'P|©) + (sw|S’|sw).

Since &’ is by assumption positive definite, one h@s|S’|s¥) > 0. Fur-
ther, for each complex one has|c|?> — (c + ¢*)] > —1. Hence(¥|S|¥) > 1 —
(©|P(S")~1P|®). This proves that if®|P(S")~'P|®) < 1 one hagW¥|S|¥) > 0 for
each vectof¥) € X, .1 which satisfies, 1 # 0. If howevery, ., = 0, then one directly
obtains(¥|S|W) = (¥|S’|¥) > 0. Thus for each nontrivigh’) one hag ¥ |S|¥) > 0,
and matrixS is hence positive definite.
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